Airfoil Self-Noise Prediction Using Artificial Neural Networks for CFD Boundary Layer Parameter

被引:0
|
作者
Lee, Jaewon [1 ]
Ju, Byeonggyu [1 ]
Jung, Yong Su [1 ]
机构
[1] Pusan Natl Univ, Dept Aerosp Engn, Busan, South Korea
关键词
Airfoil Self-Noise; Artificial Neural Network; Boundary Layer Parameter; Reynolds-Averaged Navier-Stokes (RANS);
D O I
10.5139/JKSAS.2024.52.5.367
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This study presents the development of an artificial neural network-based boundary layer parameter prediction model, trained using two-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations. The model accurately predicts boundary layer and displacement thicknesses on the trailing edge of diverse airfoil shapes, alongside estimating airfoil self-noise using empirical formulations. Employing this boundary layer model, the study analyzes the self-noise sensitivity of airfoil shapes, exploring variations in maximum thickness and camber across NACA airfoils. The findings revealed discernible trends in maximum thickness and camber of the airfoils with respect to angle of attack, lift coefficient, and lift-to-drag ratio. Furthermore, the model is extended to assess the UH-1B hovering rotor, predicting both tonal noise and airfoil self-noise across parameteric sweeps of tip Mach number, number of blades, rotor solidity, maximum thickness, and camber. The observed trends confirm the influence of these rotor parameters on tonal noise and self-noise levels.
引用
收藏
页码:367 / 379
页数:13
相关论文
共 50 条
  • [1] Airfoil self-noise prediction using deep neural networks
    Redonnet, Stephane
    Bose, Turzo
    Seth, Arjit
    Li, Larry K. B.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 159 : 180 - 191
  • [2] A frequency domain numerical method for airfoil broadband self-noise prediction
    Zhou, Qidou
    Joseph, Phillip
    JOURNAL OF SOUND AND VIBRATION, 2007, 299 (03) : 504 - 519
  • [3] A Pareto Front Based Evolutionary Model for Airfoil Self-Noise Prediction
    Tahmassebi, Amirhessam
    Gandomi, Amir H.
    Meyer-Baese, Anke
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 909 - 916
  • [4] Active boundary layer control in linear cascades using CFD and artificial neural networks
    Svorcan, Jelena
    Stupar, Slobodan
    Trivkovic, Srdan
    Petrannovic, Nikola
    Ivanov, Toni
    AEROSPACE SCIENCE AND TECHNOLOGY, 2014, 39 : 243 - 249
  • [5] Prediction and test of cavity's hydrodynamic self-noise induced by turbulent boundary layer
    LIU Xiaobin
    L Shijin
    YU Mengsa
    Chinese Journal of Acoustics, 2016, (02) : 147 - 154
  • [6] Large eddy simulation of airfoil self-noise using OpenFOAM
    Jawahar, Hasan Kamliya
    Lin, Yujing
    Savill, Mark
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2018, 90 (01): : 126 - 133
  • [7] SCALING OF AIRFOIL SELF-NOISE USING MEASURED FLOW PARAMETERS
    BROOKS, TF
    MARCOLINI, MA
    AIAA JOURNAL, 1985, 23 (02) : 207 - 213
  • [8] SCALING OF AIRFOIL SELF-NOISE USING MEASURED FLOW PARAMETERS.
    Brooks, Thomas F.
    Marcolini, Michael A.
    1600, (23):
  • [9] Prediction of Wind Turbine Airfoil Performance Using Artificial Neural Network and CFD Approaches
    Moshtaghzadeh, Mojtaba
    Aligoodarz, Mohammad Reza
    INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY INNOVATION, 2022, 12 (04) : 275 - 287
  • [10] Empirical Rotor Broadband Noise Prediction Using CFD Boundary Parameter Extraction
    Jung, Yong Su
    Baeder, James
    He, Chengjian
    JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2023, 68 (03)