Unwrapping SAR interferograms with localized subsidence signal using deep neural network

被引:0
|
作者
Wu, Zhipeng [1 ,2 ]
Wang, Teng [3 ]
Wang, Robert [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Dept Space Microwave Remote Sensing Syst, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing, Peoples R China
[3] Peking Univ, Sch Earth & Space Sci, Beijing, Peoples R China
关键词
PHASE; SEGMENTATION;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Phase unwrapping is an indispensable processing step of InSAR. However, conventional methods often underestimate the deformation due to severe noise and/or dense fringes. Here, we develop a new deep neural network to unwrap interferograms with localized subsidence signal. We train the network using synthetic interferograms with two-dimensional Gaussian shape subsidence and complex Gaussian noises, and apply the network to real interferograms with localized mining subsidence. The proposed method outperforms the standard methods by 76.3% on synthetic interferograms and similar to 50-times faster on real interferograms. The promising result shows the potential for rapid monitoring and quantification local deformation distributed in large area.
引用
收藏
页码:938 / 942
页数:5
相关论文
共 50 条
  • [41] Deep Convolutional Neural Network for Emotion Recognition Using EEG and Peripheral Physiological Signal
    Lin, Wenqian
    Li, Chao
    Sun, Shouqian
    [J]. IMAGE AND GRAPHICS (ICIG 2017), PT II, 2017, 10667 : 385 - 394
  • [42] Absolute Phase Unwrapping with Deep Neural Network for Structured Light 3D Reconstruction
    Chang, Wan
    Xiang, Sen
    Deng, Huiping
    Wu, Jin
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 420 - 425
  • [43] Deep Convolutional Neural Network Phase Unwrapping for Fringe Projection 3D Imaging
    Liang, Jian
    Zhang, Junchao
    Shao, Jianbo
    Song, Bofan
    Yao, Baoli
    Liang, Rongguang
    [J]. SENSORS, 2020, 20 (13) : 1 - 11
  • [44] Ship detection in SAR images based on deep convolutional neural network
    Yang L.
    Su J.
    Li X.
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (09): : 1990 - 1997
  • [45] Parameter Extraction Based on Deep Neural Network for SAR Target Simulation
    Niu, Shengren
    Qiu, Xiaolan
    Lei, Bin
    Ding, Chibiao
    Fu, Kun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4901 - 4914
  • [46] Polarimetric SAR Targets Detection and Classification with Deep Convolutional Neural Network
    Chen, Si-Wei
    Tao, Chen-Song
    Wang, Xue-Song
    Xiao, Shun-Ping
    [J]. 2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 2227 - 2234
  • [47] A DEEP NEURAL NETWORK FOR OIL SPILL SEMANTIC SEGMENTATION IN SAR IMAGES
    Orfanidis, Georgios
    Ioannidis, Konstantinos
    Avgerinakis, Konstantinos
    Vrochidis, Stefanos
    Kompatsiaris, Ioannis
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3773 - 3777
  • [48] SAR Automatic Target Recognition Based on Deep Convolutional Neural Network
    Xu, Ying
    Liu, Kaipin
    Ying, Zilu
    Shang, Lijuan
    Liu, Jian
    Zhai, Yikui
    Piuri, Vincenzo
    Scotti, Fabio
    [J]. IMAGE AND GRAPHICS (ICIG 2017), PT III, 2017, 10668 : 656 - 667
  • [49] SAR Image Despeckling Using a Convolutional Neural Network
    Wang, Puyang
    Zhang, He
    Patel, Vishal M.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (12) : 1763 - 1767