Unwrapping SAR interferograms with localized subsidence signal using deep neural network

被引:0
|
作者
Wu, Zhipeng [1 ,2 ]
Wang, Teng [3 ]
Wang, Robert [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Dept Space Microwave Remote Sensing Syst, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing, Peoples R China
[3] Peking Univ, Sch Earth & Space Sci, Beijing, Peoples R China
关键词
PHASE; SEGMENTATION;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Phase unwrapping is an indispensable processing step of InSAR. However, conventional methods often underestimate the deformation due to severe noise and/or dense fringes. Here, we develop a new deep neural network to unwrap interferograms with localized subsidence signal. We train the network using synthetic interferograms with two-dimensional Gaussian shape subsidence and complex Gaussian noises, and apply the network to real interferograms with localized mining subsidence. The proposed method outperforms the standard methods by 76.3% on synthetic interferograms and similar to 50-times faster on real interferograms. The promising result shows the potential for rapid monitoring and quantification local deformation distributed in large area.
引用
收藏
页码:938 / 942
页数:5
相关论文
共 50 条
  • [21] Abnormality Heartbeat Classification of ECG Signal Using Deep Neural Network and Autoencoder
    Putra, Bayu Wijaya
    Fachrurrozi, Muhammad
    Sanjaya, M. Rudi
    Firdaus
    Muliawati, Anita
    Mukti, Akhmad Noviar Satria
    Nurmaini, Siti
    [J]. 2019 INTERNATIONAL CONFERENCE ON INFORMATICS, MULTIMEDIA, CYBER AND INFORMATION SYSTEM (ICIMCIS), 2019, : 213 - 217
  • [22] A Deep Neural Network-Based Pain Classifier Using a Photoplethysmography Signal
    Lim, Hyunjun
    Kim, Byeongnam
    Noh, Gyu-Jeong
    Yoo, Sun K.
    [J]. SENSORS, 2019, 19 (02)
  • [23] Signal mixture estimation for degenerate heavy Higgses using a deep neural network
    Kvellestad, Anders
    Maeland, Steffen
    Strumke, Inga
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (12):
  • [24] Signal mixture estimation for degenerate heavy Higgses using a deep neural network
    Anders Kvellestad
    Steffen Maeland
    Inga Strümke
    [J]. The European Physical Journal C, 2018, 78
  • [25] Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
    Xiao, Xiongliang
    Fang, Yuee
    [J]. FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [26] SAE-Net: A Deep Neural Network for SAR Autofocus
    Pu, Wei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] A NEW DEEP NEURAL NETWORK FOR OPTICAL AND SAR IMAGE FUSION
    Zhao, Guowei
    Dong, Ganggang
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1047 - 1050
  • [28] Retrieval Across Optical and SAR Images with Deep Neural Network
    Zhang, Yifan
    Zhou, Wengang
    Li, Houqiang
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 392 - 402
  • [29] Deep Supervised and Contractive Neural Network for SAR Image Classification
    Geng, Jie
    Wang, Hongyu
    Fan, Jianchao
    Ma, Xiaorui
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (04): : 2442 - 2459
  • [30] Refined Two-Stage Programming Approach of Phase Unwrapping for Multi-Baseline SAR Interferograms Using the Unscented Kalman Filter
    Gao, YanDong
    Zhang, ShuBi
    Li, Tao
    Chen, QianFu
    Zhang, Xiang
    Li, ShiJin
    [J]. REMOTE SENSING, 2019, 11 (02)