Unwrapping SAR interferograms with localized subsidence signal using deep neural network

被引:0
|
作者
Wu, Zhipeng [1 ,2 ]
Wang, Teng [3 ]
Wang, Robert [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Dept Space Microwave Remote Sensing Syst, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing, Peoples R China
[3] Peking Univ, Sch Earth & Space Sci, Beijing, Peoples R China
关键词
PHASE; SEGMENTATION;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Phase unwrapping is an indispensable processing step of InSAR. However, conventional methods often underestimate the deformation due to severe noise and/or dense fringes. Here, we develop a new deep neural network to unwrap interferograms with localized subsidence signal. We train the network using synthetic interferograms with two-dimensional Gaussian shape subsidence and complex Gaussian noises, and apply the network to real interferograms with localized mining subsidence. The proposed method outperforms the standard methods by 76.3% on synthetic interferograms and similar to 50-times faster on real interferograms. The promising result shows the potential for rapid monitoring and quantification local deformation distributed in large area.
引用
收藏
页码:938 / 942
页数:5
相关论文
共 50 条
  • [1] Deep Convolutional Neural Network-Based Robust Phase Gradient Estimation for Two-Dimensional Phase Unwrapping Using SAR Interferograms
    Zhou, Lifan
    Yu, Hanwen
    Lan, Yang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4653 - 4665
  • [2] Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models
    Chen, CW
    Zebker, HA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (08): : 1709 - 1719
  • [3] Automatic Detection of Subsidence Troughs in SAR Interferograms Based on Convolutional Neural Networks
    Rotter, Pawel
    Muron, Wiktor
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (01) : 82 - 86
  • [4] Automatic Detection of Subsidence Troughs in SAR Interferograms Using Mathematical Morphology
    Dwornik, Maciej
    Porzycka-Strzelczyk, Stanislawa
    Strzelczyk, Jacek
    Malik, Hubert
    Murdzek, Radoslaw
    Franczyk, Anna
    Bala, Justyna
    [J]. ENERGIES, 2021, 14 (22)
  • [5] Automatic Subsidence Troughs Detection in SAR Interferograms Using Circlet Transform
    Bala, Justyna
    Dwornik, Maciej
    Franczyk, Anna
    [J]. SENSORS, 2021, 21 (05) : 1 - 14
  • [6] Simultaneous Classification and Location of Volcanic Deformation in SAR Interferograms Using a Convolutional Neural Network
    Gaddes, M.
    Hooper, A.
    Albino, F.
    [J]. EARTH AND SPACE SCIENCE, 2024, 11 (06)
  • [7] IMPROVED BRANCH-CUT ALGORITHM FOR MULTIBASELINE PHASE UNWRAPPING USING SAR INTERFEROGRAMS
    Zhou, Lifan
    Yu, Hanwen
    Lan, Yang
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 405 - 408
  • [8] Temporal phase unwrapping with a lightweight deep neural network
    Liu, Kai
    Zhang, Yuzhen
    [J]. OPTICS FRONTIER ONLINE 2020: OPTICS IMAGING AND DISPLAY, 2020, 11571
  • [9] Direct and accurate phase unwrapping with deep neural network
    Qin, Yi
    Wan, Shujia
    Wan, Yuhong
    Weng, Jiawen
    Liu, Wei
    Gong, Qiong
    [J]. APPLIED OPTICS, 2020, 59 (24) : 7258 - 7267
  • [10] Deep-Learning-Based Phase Discontinuity Prediction for 2-D Phase Unwrapping of SAR Interferograms
    Wu, Zhipeng
    Wang, Teng
    Wang, Yingjie
    Wang, Robert
    Ge, Daqing
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60