Non-enzymatic disposable paper sensor for electrochemical detection of creatinine

被引:0
|
作者
Manikandan, Ramalingam [1 ,2 ]
Yoon, Jang-Hee [3 ]
Lee, Jaewon [4 ]
Chang, Seung-Cheol [1 ]
机构
[1] Pusan Natl Univ, Coll Nanosci & Nanotechnol, Dept Cogno Mechatron Engn, Busan 46241, South Korea
[2] Pusan Natl Univ, Engn Res Ctr Color Modulated Extrasensory Percept, Busan 46241, South Korea
[3] Korea Basic Sci Inst, Busan Ctr, Busan 46742, South Korea
[4] Pusan Natl Univ, Coll Pharm, Dept Pharm, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Creatinine; Kidney disease; Paper-based analytical device; Electrochemical activation; Stripping voltammetry; Blood serum and urine;
D O I
10.1016/j.microc.2024.111114
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Selective detection of creatinine (Ctn) is crucial for the clinical diagnosis of early-stage kidney dysfunction. A non-enzymatic electrochemical method for a highly selective and sensitive detection of Ctn in blood serum and urine samples was developed using an electrochemically activated carbon-coated paper-based analytical device (ePAD*). During activation, the growth of stable carboxyl (C = O, COOH) groups on the edge planes of the carbon surface was observed. The prepared ePAD* was characterized using various microscopic, spectroscopic, and electrochemical techniques. The ePAD* was utilized as a medium exchanger, and the voltammetric response of Ctn detection in the linear concentration from 0.03 to 45 mM with a detection limit of 5.41 mu M was achieved. In addition, the selective detection of Ctn in the presence of potential interferences (i.e., uric acid, ascorbic acid, ammonia, and urea) was examined. The examination revealed a remarkable selectivity toward Ctn detection. Real-time detection of Ctn in blood serum and urine samples was performed. The results were correlated with the classical Jaffe <acute accent> colorimetric method. Our ePAD* exhibited a better electrochemical response. Thus, it is a highly potential diagnostic method for further development as a rapid and precise detection platform for point-of-care (POC) devices for examining patients with kidney disease.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [31] A Flexible, Low-Cost, Disposable Non-Enzymatic Electrochemical Sensor Based on MnO2/Cellulose Nanostructure
    Tohamy, Hebat-Allah S.
    Magar, Hend S.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (12)
  • [32] Polyaniline-ZnO-NiO Nanocomposite based Non-enzymatic Electrochemical Sensor for Malathion Detection
    Jikamo, Samuel Chufamo
    Habtemariam, Tesfaye Haile
    Dolla, Tarekegn Heliso
    ELECTROANALYSIS, 2023, 35 (04)
  • [33] Recent advances in electrochemical non-enzymatic glucose sensor for the detection of glucose in tears and saliva: A Review
    Jarnda, Kermue Vasco
    Wang, Danqi
    Qurrat-Ul-Ain, Richmond
    Anaman, Richmond
    Johnson, Varney Edwin
    Roberts, Garmai Prosperity
    Johnson, Pauline Sammumah
    Jallawide Jr, Bob Wisdom
    Kai, Tianhan
    Ding, Ping
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 363
  • [34] A high-performance Co-MOF non-enzymatic electrochemical sensor for glucose detection
    Ma, Zhen-Zhen
    Ma, Yao
    Liu, Bing
    Xu, Ling
    Jiao, Huan
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (45) : 21350 - 21358
  • [35] Recent advancements in non-enzymatic electrochemical sensor development for the detection of organophosphorus pesticides in food and environment
    Hossain, Mohammad Imran
    Hasnat, Mohammad A.
    HELIYON, 2023, 9 (09)
  • [36] High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection
    He, Juan
    Sunarso, Jaka
    Zhu, Yinlong
    Zhong, Yijun
    Miao, Jie
    Zhou, Wei
    Shao, Zongping
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 244 : 482 - 491
  • [37] Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors
    Zhang, Minwei
    Haider, Arnab
    Hou, Chengyi
    Ulstrup, Jens
    Chi, Qijin
    BIOELECTROCHEMISTRY, 2016, 109 : 87 - 94
  • [38] An Inkjet-Printed Non-Enzymatic Hydrogen Peroxide Sensor on Paper
    Shamkhalichenar, Hamed
    Choi, Jin-Woo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (05) : B3101 - B3106
  • [39] Non-enzymatic electrochemical determination of creatinine using a novel screen-printed microcell
    Fava, Elson Luiz
    do Prado, Thiago Martimiano
    Garcia-Filho, Amauri
    Silva, Tiago Almeida
    Cincotto, Fernando Henrique
    de Moraes, Fernando Cruz
    Faria, Ronaldo Censi
    Fatibello-Filho, Orlando
    TALANTA, 2020, 207
  • [40] Design and Development of a Non-Enzymatic Electrochemical Biosensor for the Detection of Glutathione
    Kannappan, Shrute
    Prabakaran, Lakshmishri
    Nesakumar, Noel
    Babu, K. Jayanth
    Kulandaisamy, Arockia Jayalatha
    Rayappan, John Bosco Balaguru
    ELECTROANALYSIS, 2023, 35 (01) : 245 - 255