Non-enzymatic disposable paper sensor for electrochemical detection of creatinine

被引:0
|
作者
Manikandan, Ramalingam [1 ,2 ]
Yoon, Jang-Hee [3 ]
Lee, Jaewon [4 ]
Chang, Seung-Cheol [1 ]
机构
[1] Pusan Natl Univ, Coll Nanosci & Nanotechnol, Dept Cogno Mechatron Engn, Busan 46241, South Korea
[2] Pusan Natl Univ, Engn Res Ctr Color Modulated Extrasensory Percept, Busan 46241, South Korea
[3] Korea Basic Sci Inst, Busan Ctr, Busan 46742, South Korea
[4] Pusan Natl Univ, Coll Pharm, Dept Pharm, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
Creatinine; Kidney disease; Paper-based analytical device; Electrochemical activation; Stripping voltammetry; Blood serum and urine;
D O I
10.1016/j.microc.2024.111114
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Selective detection of creatinine (Ctn) is crucial for the clinical diagnosis of early-stage kidney dysfunction. A non-enzymatic electrochemical method for a highly selective and sensitive detection of Ctn in blood serum and urine samples was developed using an electrochemically activated carbon-coated paper-based analytical device (ePAD*). During activation, the growth of stable carboxyl (C = O, COOH) groups on the edge planes of the carbon surface was observed. The prepared ePAD* was characterized using various microscopic, spectroscopic, and electrochemical techniques. The ePAD* was utilized as a medium exchanger, and the voltammetric response of Ctn detection in the linear concentration from 0.03 to 45 mM with a detection limit of 5.41 mu M was achieved. In addition, the selective detection of Ctn in the presence of potential interferences (i.e., uric acid, ascorbic acid, ammonia, and urea) was examined. The examination revealed a remarkable selectivity toward Ctn detection. Real-time detection of Ctn in blood serum and urine samples was performed. The results were correlated with the classical Jaffe <acute accent> colorimetric method. Our ePAD* exhibited a better electrochemical response. Thus, it is a highly potential diagnostic method for further development as a rapid and precise detection platform for point-of-care (POC) devices for examining patients with kidney disease.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] Non-Enzymatic Electrochemical Detection of Urine Creatinine Using Cobalt-Gold Bimetallic Nanoparticles
    Meera, R.
    Neena, P. K.
    Pradeep, Aarathi
    Nair, Bipin G.
    Vasu, Suneesh Punathil
    Babu, T. G. Satheesh
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (06)
  • [22] A non-enzymatic ethanol sensor based on a nanostructured catalytic disposable electrode
    Silva Neves, Marta M. Pereira
    Begona Gonzalez-Garcia, M.
    Bobes-Limenes, Pablo
    Perez-Junquera, Alejandro
    Hernandez-Santos, David
    Jose Vidal-Iglesias, Francisco
    Solla-Gullon, Jose
    Fanjul-Bolado, Pablo
    ANALYTICAL METHODS, 2017, 9 (35) : 5108 - 5114
  • [23] PANI: silicene nanocomposites based non-enzymatic electrochemical voltammetric sensor for dopamine detection
    Baytemir, Guelsen
    Tasaltin, Nevin
    Karaca, Bahriye
    Karakus, Selcan
    Gursu, Gamze
    Baris, Behzad
    Yildiz, Dilber Esra
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (17)
  • [24] PANI: silicene nanocomposites based non-enzymatic electrochemical voltammetric sensor for dopamine detection
    Gülsen Baytemir
    Nevin Taşaltın
    Bahriye Karaca
    Selcan Karakuş
    Gamze Gürsu
    Behzad Barış
    Dilber Esra Yıldız
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [25] Controllable design of a macroporous PBA as an efficient non-enzymatic electrochemical sensor for glucose detection
    Ying, Shuanglu
    Liu, Tian
    Kong, Yuxuan
    Jiang, Qiao
    Chai, Ning
    Yi, Fei-Yan
    CRYSTENGCOMM, 2023, 25 (37) : 5343 - 5350
  • [26] Highly sensitive Non-enzymatic, Non-Invasive Disposable Electrochemical Polyaniline Nanocaps based Sweat Sensor for Glucose Monitoring
    Saraswathi, K. A.
    Reddy, M. Sai Bhargava
    Jayarambabu, N.
    Aich, Shampa
    Rao, Tumu Venkatappa
    MATERIALS LETTERS, 2023, 349
  • [27] Non-enzymatic and Electrochemical Detection of Creatine in Food Supplements
    Ozge Surucu
    Serdar Abaci
    Electrocatalysis, 2022, 13 : 195 - 209
  • [28] Non-enzymatic and Electrochemical Detection of Creatine in Food Supplements
    Surucu, Ozge
    Abaci, Serdar
    ELECTROCATALYSIS, 2022, 13 (02) : 195 - 209
  • [29] A Cu-NPG/SPE sensor for non-enzymatic and non-invasive electrochemical glucose detection
    Patricio Hernandez-Saravia, Lucas
    Martinez, Tamara
    Llanos, Jaime
    Bertotti, Mauro
    MICROCHEMICAL JOURNAL, 2021, 160
  • [30] A Non-enzymatic Ag/δ-FeOOH Sensor for Hydrogen Peroxide Determination using Disposable Carbon-based Electrochemical Cells
    de Meira, Flavio H. A.
    Resende, Sayton F.
    Monteiro, Douglas S.
    Pereira, Marcio C.
    Mattoso, Luiz H. C.
    Faria, Ronaldo C.
    Afonso, Andre S.
    ELECTROANALYSIS, 2020, 32 (10) : 2231 - 2236