Sum and Difference of Powers of Two Fibonacci Numbers

被引:0
|
作者
Taclay, Richard J. [1 ]
机构
[1] Nueva Vizcaya State Univ, Coll Arts & Sci, Dept Math & Stat, Bayombong, Nueva Vizcaya, Philippines
关键词
Diophantine equation; Fibonacci number; PERFECT POWERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number and let x, k > 1 be integers. We find all nonnegative integer solutions (n, m, x, p, k) to the Diophantine equations F-n(x) +/- F-m(x) = p(k) for 0 <= m < n, where F-n and F-m are the n-th and m-th Fibonacci numbers, respectively. For m not equal 0, the gcd( F-n, F-m) = 1 and F-n(x) + F-m(x) = p(k), where x is not a power of 2.
引用
收藏
页码:1155 / 1158
页数:4
相关论文
共 50 条
  • [41] GENERATING FUNCTIONS FOR POWERS OF FIBONACCI NUMBERS
    RIORDAN, J
    DUKE MATHEMATICAL JOURNAL, 1962, 29 (01) : 5 - &
  • [42] An exponential Diophantine equation related to powers of two consecutive Fibonacci numbers
    Luca, Florian
    Oyono, Roger
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2011, 87 (04) : 45 - 50
  • [43] ON SUM OF POWERS OF NATURAL NUMBERS
    CHRISTIAN, JG
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (02): : 149 - &
  • [44] A Sum of Hyperbolic Cosines of Fibonacci Numbers
    Ohtsuka, Hideyuki
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (02): : 185 - 185
  • [45] The Infinite Sum of Reciprocal of the Fibonacci Numbers
    Guo Jie ZHANG Department of Mathematics
    Journal of Mathematical Research with Applications, 2011, (06) : 1030 - 1034
  • [46] A Binomial Sum of Generalized Fibonacci Numbers
    Plaza, Angel
    Smith, Jason L.
    Abel, Ulrich
    Bataille, Michel
    Boyadzhiev, Khristo N.
    Bradie, Brian
    Fedak, I. V.
    Fleischman, Dmitry
    Frontczak, Robert
    Ohtsuka, Hideyuki
    Schumacher, Raphael
    Stadler, Albert
    Terr, David
    FIBONACCI QUARTERLY, 2020, 58 (03): : 275 - 276
  • [47] The Infinite Sum of Reciprocal of the Fibonacci Numbers
    Guo Jie ZHANG Department of MathematicsNorthwest UniversityShaanxi PRChina
    数学研究与评论, 2011, 31 (06) : 1030 - 1034
  • [48] On a binomial sum for the Fibonacci and related numbers
    Haukkanen, P
    FIBONACCI QUARTERLY, 1996, 34 (04): : 326 - 331
  • [49] On a problem of Pillai with Fibonacci numbers and powers of 2
    Ddamulira, Mahadi
    Luca, Florian
    Rakotomalala, Mihaja
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (03): : 411 - 421