Sum and Difference of Powers of Two Fibonacci Numbers

被引:0
|
作者
Taclay, Richard J. [1 ]
机构
[1] Nueva Vizcaya State Univ, Coll Arts & Sci, Dept Math & Stat, Bayombong, Nueva Vizcaya, Philippines
关键词
Diophantine equation; Fibonacci number; PERFECT POWERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number and let x, k > 1 be integers. We find all nonnegative integer solutions (n, m, x, p, k) to the Diophantine equations F-n(x) +/- F-m(x) = p(k) for 0 <= m < n, where F-n and F-m are the n-th and m-th Fibonacci numbers, respectively. For m not equal 0, the gcd( F-n, F-m) = 1 and F-n(x) + F-m(x) = p(k), where x is not a power of 2.
引用
收藏
页码:1155 / 1158
页数:4
相关论文
共 50 条
  • [21] On perfect powers that are sum of two balancing numbers
    Bhoi, Pritam Kumar
    Rout, Sudhansu Sekhar
    Panda, Gopal Krishna
    PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (01) : 93 - 101
  • [22] Fibonacci and Lucas numbers as difference of two repdigits
    Erduvan, Fatih
    Keskin, Refik
    Luca, Florian
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 575 - 589
  • [23] Fibonacci and Lucas numbers as difference of two repdigits
    Fatih Erduvan
    Refik Keskin
    Florian Luca
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 575 - 589
  • [24] FIBONACCI NUMBERS WHICH ARE POWERS
    ROBBINS, N
    FIBONACCI QUARTERLY, 1978, 16 (06): : 515 - 517
  • [25] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Duman, Merve Gueney
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2024, 90 (01): : 124 - 131
  • [26] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Merve Güney Duman
    Proceedings of the Indian National Science Academy, 2024, 90 : 124 - 131
  • [27] Ratios of sums of two Fibonacci numbers equal to powers of 2
    Bravo, Jhon J.
    Diaz, Maribel
    Luca, Florian
    MATHEMATICAL COMMUNICATIONS, 2020, 25 (02) : 185 - 199
  • [28] ON THE SUM OF RECIPROCAL FIBONACCI NUMBERS
    Ohtsuka, Hideyuki
    Nakamura, Shigeru
    FIBONACCI QUARTERLY, 2008, 46-47 (02): : 153 - 159
  • [29] On the distance between products of consecutive Fibonacci numbers and powers of Fibonacci numbers
    Bravo, Jhon J.
    Komatsu, Takao
    Luca, Florian
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (01): : 181 - 198
  • [30] A Sum of Inverse of Fibonacci Numbers
    Bruckman, Paul S.
    Cooke, Charles K.
    Greubel, G. C.
    Hendel, Russell J.
    Hillman, Rebecca A.
    Seibert, Jaroslav
    FIBONACCI QUARTERLY, 2008, 46-47 (01): : 89 - 89