Facilitating pathway and network based analysis of RNA-Seq data with pathlinkR

被引:0
|
作者
Blimkie, Travis M. [1 ]
An, Andy [1 ]
Hancock, Robert E. W. [1 ]
机构
[1] Univ British Columbia, Ctr Microbial Dis & Immun Res, Dept Microbiol & Immunol, REW Hancock Lab, Vancouver, BC, Canada
关键词
PACKAGE;
D O I
10.1371/journal.pcbi.1012422
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
R package pathlinkR is designed to aid transcriptomic analyses by streamlining and simplifying the process of analyzing and interpreting differentially expressed genes derived from human RNA-Seq data. It provides an integrated approach to performing pathway enrichment and network-based analyses, while also producing publication-quality figures to summarize these results, allowing users to more efficiently interpret their findings and extract biological meaning from large amounts of data. pathlinkR is available to install from the software repository Bioconductor at https://bioconductor.org/packages/pathlinkR/, with support available through the Bioconductor forums.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A comprehensive workflow for optimizing RNA-seq data analysis
    Jiang, Gao
    Zheng, Juan-Yu
    Ren, Shu-Ning
    Yin, Weilun
    Xia, Xinli
    Li, Yun
    Wang, Hou-Ling
    BMC GENOMICS, 2024, 25 (01):
  • [42] Oqtans: a multifunctional workbench for RNA-seq data analysis
    Vipin T Sreedharan
    Sebastian J Schultheiss
    Géraldine Jean
    André Kahles
    Regina Bohnert
    Philipp Drewe
    Pramod Mudrakarta
    Nico Görnitz
    Georg Zeller
    Gunnar Rätsch
    BMC Bioinformatics, 15
  • [43] Model-based clustering for RNA-seq data
    Si, Yaqing
    Liu, Peng
    Li, Pinghua
    Brutnell, Thomas P.
    BIOINFORMATICS, 2014, 30 (02) : 197 - 205
  • [44] Inferring metabolic pathway activity levels from RNA-Seq data
    Temate-Tiagueu, Yvette
    Al Seesi, Sahar
    Mathew, Meril
    Mandric, Igor
    Rodriguez, Alex
    Bean, Kayla
    Cheng, Qiong
    Glebova, Olga
    Mandoiu, Ion
    Lopanik, Nicole B.
    Zelikovsky, Alexander
    BMC GENOMICS, 2016, 17
  • [45] A network enhancement-based method for clustering of single cell RNA-seq data
    Zhu, Xiaoshu
    Guo, Lilu
    Li, Rongyuan
    Xu, Yunpei
    Wu, Fang-Xiang
    Peng, Xiaoqing
    Li, Hong-Dong
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2020, 24 (04) : 306 - 325
  • [46] Key Genes in Stomach Adenocarcinoma Identified via Network Analysis of RNA-Seq Data
    Shen, Li
    Zhao, Lizhi
    Tang, Jiquan
    Wang, Zhiwei
    Bai, Weisong
    Zhang, Feng
    Wang, Shouli
    Li, Weihua
    PATHOLOGY & ONCOLOGY RESEARCH, 2017, 23 (04) : 745 - 752
  • [47] Critical genes of hepatocellular carcinoma revealed by network and module analysis of RNA-seq data
    Yang, M. -R.
    Zhang, Y.
    Wu, X. -X.
    Chen, W.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2016, 20 (20) : 4248 - 4256
  • [48] Inferring metabolic pathway activity levels from RNA-Seq data
    Yvette Temate-Tiagueu
    Sahar Al Seesi
    Meril Mathew
    Igor Mandric
    Alex Rodriguez
    Kayla Bean
    Qiong Cheng
    Olga Glebova
    Ion Măndoiu
    Nicole B. Lopanik
    Alexander Zelikovsky
    BMC Genomics, 17
  • [49] Network embedding-based representation learning for single cell RNA-seq data
    Li, Xiangyu
    Chen, Weizheng
    Chen, Yang
    Zhang, Xuegong
    Gu, Jin
    Zhang, Michael Q.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (19)
  • [50] A censored-Poisson model based approach to the analysis of RNA-seq data
    Chen, Xing
    Lai, Yinglei
    QUANTITATIVE BIOLOGY, 2020, 8 (02) : 155 - 171