Facilitating pathway and network based analysis of RNA-Seq data with pathlinkR

被引:0
|
作者
Blimkie, Travis M. [1 ]
An, Andy [1 ]
Hancock, Robert E. W. [1 ]
机构
[1] Univ British Columbia, Ctr Microbial Dis & Immun Res, Dept Microbiol & Immunol, REW Hancock Lab, Vancouver, BC, Canada
关键词
PACKAGE;
D O I
10.1371/journal.pcbi.1012422
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
R package pathlinkR is designed to aid transcriptomic analyses by streamlining and simplifying the process of analyzing and interpreting differentially expressed genes derived from human RNA-Seq data. It provides an integrated approach to performing pathway enrichment and network-based analyses, while also producing publication-quality figures to summarize these results, allowing users to more efficiently interpret their findings and extract biological meaning from large amounts of data. pathlinkR is available to install from the software repository Bioconductor at https://bioconductor.org/packages/pathlinkR/, with support available through the Bioconductor forums.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Getting the most out of RNA-seq data analysis
    Khang, Tsung Fei
    Lau, Ching Yee
    PEERJ, 2015, 3
  • [32] De novo assembly and analysis of RNA-seq data
    Robertson, Gordon
    Schein, Jacqueline
    Chiu, Readman
    Corbett, Richard
    Field, Matthew
    Jackman, Shaun D.
    Mungall, Karen
    Lee, Sam
    Okada, Hisanaga Mark
    Qian, Jenny Q.
    Griffith, Malachi
    Raymond, Anthony
    Thiessen, Nina
    Cezard, Timothee
    Butterfield, Yaron S.
    Newsome, Richard
    Chan, Simon K.
    She, Rong
    Varhol, Richard
    Kamoh, Baljit
    Prabhu, Anna-Liisa
    Tam, Angela
    Zhao, YongJun
    Moore, Richard A.
    Hirst, Martin
    Marra, Marco A.
    Jones, Steven J. M.
    Hoodless, Pamela A.
    Birol, Inanc
    NATURE METHODS, 2010, 7 (11) : 909 - U62
  • [33] A survey of best practices for RNA-seq data analysis
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    GENOME BIOLOGY, 2016, 17
  • [34] De novo assembly and analysis of RNA-seq data
    Gordon Robertson
    Jacqueline Schein
    Readman Chiu
    Richard Corbett
    Matthew Field
    Shaun D Jackman
    Karen Mungall
    Sam Lee
    Hisanaga Mark Okada
    Jenny Q Qian
    Malachi Griffith
    Anthony Raymond
    Nina Thiessen
    Timothee Cezard
    Yaron S Butterfield
    Richard Newsome
    Simon K Chan
    Rong She
    Richard Varhol
    Baljit Kamoh
    Anna-Liisa Prabhu
    Angela Tam
    YongJun Zhao
    Richard A Moore
    Martin Hirst
    Marco A Marra
    Steven J M Jones
    Pamela A Hoodless
    Inanc Birol
    Nature Methods, 2010, 7 : 909 - 912
  • [35] The Impact of Normalization Methods on RNA-Seq Data Analysis
    Zyprych-Walczak, J.
    Szabelska, A.
    Handschuh, L.
    Gorczak, K.
    Klamecka, K.
    Figlerowicz, M.
    Siatkowski, I.
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [36] shortran: a pipeline for small RNA-seq data analysis
    Gupta, Vikas
    Markmann, Katharina
    Pedersen, Christian N. S.
    Stougaard, Jens
    Andersen, Stig U.
    BIOINFORMATICS, 2012, 28 (20) : 2698 - 2700
  • [37] sRNAflow: A Tool for the Analysis of Small RNA-Seq Data
    Zayakin, Pawel
    NON-CODING RNA, 2024, 10 (01)
  • [38] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    BMC Bioinformatics, 14
  • [39] A survey of best practices for RNA-seq data analysis
    Ana Conesa
    Pedro Madrigal
    Sonia Tarazona
    David Gomez-Cabrero
    Alejandra Cervera
    Andrew McPherson
    Michał Wojciech Szcześniak
    Daniel J. Gaffney
    Laura L. Elo
    Xuegong Zhang
    Ali Mortazavi
    Genome Biology, 17
  • [40] Network module-based model in the differential expression analysis for RNA-seq
    Lei, Mingli
    Xu, Jia
    Huang, Li-Ching
    Wang, Lily
    Li, Jing
    BIOINFORMATICS, 2017, 33 (17) : 2699 - 2705