Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/ wearable electronics based on triboelectric and piezoresistive sensor

被引:5
|
作者
Qiu, Chuang [1 ]
He, Ming [1 ]
Xu, Shi-feng [2 ]
Ali, Aasi Mohammad [1 ]
Shen, Lin [1 ]
Wang, Jia-shi [1 ]
机构
[1] China Med Univ, Shengjing Hosp, Dept Orthoped, Shenyang 110004, Liaoning, Peoples R China
[2] Shenyang Aerosp Univ, Coll Sci, Shenyang 110136, Liaoning, Peoples R China
关键词
Hybrid hydrogel; Flexible electronics; Photothermal therapy; Human; -machine; Interfaces; Sensor; ACTUATORS; ENERGY;
D O I
10.1016/j.ijbiomac.2024.131825
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Flexible electronics are highly developed nowadays in human-machine interfaces (HMI). However, challenges such as lack of flexibility, conductivity, and versatility always greatly hindered flexible electronics applications. In this work, a multifunctional hybrid hydrogel (H-hydrogel) was prepared by combining two kinds of 1D polymer chains (polyacrylamide and polydopamine) and two kinds of 2D nanosheets (Ti3C2Tx MXene and graphene oxide nanosheets) as quadruple crosslinkers. The introduced Ti3C2Tx MXene and graphene oxide nanosheets are bonded with the PAM and PDA polymer chains by hydrogen bonds. This unique crosslinking and stable structure endow the H-hydrogel with advantages such as good flexibility, electrical conductivity, self-adhesion, and mechanical robustness. The two kinds of nanosheets not only improved the mechanical strength and conductivity of the H-hydrogel, but also helped to form the double electric layers (DELs) between the nanosheets and the bulk-free water phase inside the H-hydrogel. When utilized as the electrode of a triboelectric nanogenerator (TENG), high electrical output performances were realized due to the dynamic balance of the DELs between the nanosheets and the H-hydrogel's inside water molecules. Moreover, flexible sensors, including triboelectric, and strain/pressure sensors, were achieved for human motion detection at low frequencies. This hydrogel is promising for HMI and e-skin.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Highly stretchable, conductive, and self-adhesive starch-based hydrogel for high-performance flexible electronic devices
    Chen, Rui
    Wang, Lei
    Ji, Dan
    Luo, Mengqing
    Zhang, Zihao
    Zhao, Guiyan
    Chang, Xiaohua
    Zhu, Yutian
    CARBOHYDRATE POLYMERS, 2025, 352
  • [32] Flexible, Stretchable, and Antifreezing Triboelectric Nanogenerators Based on Cellulose Hydrogel for Energy Harvesting and Wearable Electronics
    Zhou, Yuyan
    Huang, Guiyun
    Zhang, Zhe
    Qin, Liling
    Cai, Hui
    Sha, Jiulong
    ACS APPLIED NANO MATERIALS, 2024, 7 (17) : 20866 - 20876
  • [33] A stretchable, self-adhesive, conductive double-network hydrogel and its application in flexible strain sensors
    Shi, Gege
    Zhan, Tianyu
    Hu, Yufang
    Guo, Zhiyong
    Wang, Sui
    JOURNAL OF POLYMER RESEARCH, 2023, 30 (02)
  • [34] Egg white/gelatin/carboxymethylcellulose superbly bonded and biocompatible flexible self-adhesive multifunctional sensor
    Sun, Shuang
    Xu, Yizhe
    Maimaitiyiming, Xieraili
    CELLULOSE, 2024, 31 (11) : 6779 - 6795
  • [35] Environment-tolerant, inherently conductive and self-adhesive gelatin-based supramolecular eutectogel for flexible sensor
    Qiao, Zhiyuan
    Chen, Ying
    Pan, Hongyu
    Li, Jichang
    Meng, Qingkai
    Wang, Jianfeng
    Cao, Yanxia
    Wang, Wanjie
    Yang, Yanyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 282
  • [36] A stretchable, self-adhesive, conductive double-network hydrogel and its application in flexible strain sensors
    Gege Shi
    Tianyu Zhan
    Yufang Hu
    Zhiyong Guo
    Sui Wang
    Journal of Polymer Research, 2023, 30
  • [37] Facile and fast preparation of stretchable, self-adhesive, moisturizing, antifreezing and conductive tough hydrogel for wearable strain sensors
    Chao, Yanxia
    Li, Ying
    Wang, Huibin
    Wang, Nan
    Wang, Tao
    Chu, Zhuangzhuang
    Yang, Zhuohong
    Hu, Yang
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (12) : 4406 - 4416
  • [38] Biosafe, self-adhesive, recyclable, tough, and conductive hydrogels for multifunctional sensors
    Fan, Ling
    Hu, Lizhen
    Xie, Jinliang
    He, Zhongjie
    Zheng, Yaping
    Wei, DaiXu
    Yao, Dongdong
    Su, Fangfang
    BIOMATERIALS SCIENCE, 2021, 9 (17) : 5884 - 5896
  • [39] Highly Stretchable, Fast Self-Healing, Self-Adhesive, and Strain-Sensitive Wearable Sensor Based on Ionic Conductive Hydrogels
    Li, Ruirui
    Ren, Jie
    Zhang, Minmin
    Li, Meng
    Li, Yan
    Yang, Wu
    BIOMACROMOLECULES, 2024, 25 (02) : 614 - 625
  • [40] A highly stretchable, self-adhesive, anti-freezing, and highly sensitive dual-network conductive hydrogel sensor for multifunctional electronic skin
    Zhang, Rui
    Xie, Di
    Zhang, Congcong
    Xu, Zesheng
    Fang, Yiqun
    Wang, Weihong
    Xu, Min
    Song, Yongming
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24608 - 24617