Deep Spectral Spatial Feature Enhancement Through Transformer for Hyperspectral Image Classification

被引:0
|
作者
Khan, Rahim [1 ]
Arshad, Tahir [2 ]
Ma, Xuefei [1 ]
Chen, Wang [1 ]
Zhu, Haifeng [1 ]
Wu, Yanni [3 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[3] Xian Univ Arts & Sci, Sci Res Dept, Xian 710071, Peoples R China
关键词
Feature extraction; Transformers; Hyperspectral imaging; Computational modeling; Three-dimensional displays; Logic gates; Kernel; Attention module; convolutional neural network (CNN); hyperspectral image (HSI) classification; vision transformer;
D O I
10.1109/LGRS.2024.3424986
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) data has a wide range of spectral information that is valuable for numerous tasks. HSI data encounters some challenges, such as small training samples, data scarcity, and redundant information. Researchers present numerous investigations to address these challenges, with convolutional neural networks (CNNs) being extensively used in HSI classification because of their capacity to extract features from data. Moreover, vision transformers have demonstrated their ability in the remote sensing field. However, the training of these models required a significant amount of labeled training data. We proposed a vision-based transformer module that consists of a multiscale feature extractor to extract joint spectral-spatial low-level, shallow features. For high-level semantic feature extraction, we proposed a regional attention mechanism with a spatially gated module. We tested the proposed model on four publicly available HSI datasets: Pavia University, Salinas, Xuzhou, Loukia, and the Houston 2013 dataset. Using only 1%, 1%, 1%, 2%, and 2% of the training samples from the five datasets, we achieved the best classification in terms of overall accuracy (OA), average accuracy (AA), and Kappa coefficient.
引用
收藏
页码:1 / 1
页数:5
相关论文
共 50 条
  • [1] Spectral-Swin Transformer with Spatial Feature Extraction Enhancement for Hyperspectral Image Classification
    Peng, Yinbin
    Ren, Jiansi
    Wang, Jiamei
    Shi, Meilin
    REMOTE SENSING, 2023, 15 (10)
  • [2] Shallow-to-Deep Spatial-Spectral Feature Enhancement for Hyperspectral Image Classification
    Zhou, Lijian
    Ma, Xiaoyu
    Wang, Xiliang
    Hao, Siyuan
    Ye, Yuanxin
    Zhao, Kun
    REMOTE SENSING, 2023, 15 (01)
  • [3] Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    Lin, Zhouhan
    REMOTE SENSING, 2021, 13 (03) : 1 - 22
  • [4] Synergistic spectral and spatial feature analysis with transformer and convolution networks for hyperspectral image classification
    Dhirendra Prasad Yadav
    Deepak Kumar
    Anand Singh Jalal
    Ankit Kumar
    B. Kada
    Signal, Image and Video Processing, 2024, 18 : 2975 - 2990
  • [5] Synergistic spectral and spatial feature analysis with transformer and convolution networks for hyperspectral image classification
    Yadav, Dhirendra Prasad
    Kumar, Deepak
    Jalal, Anand Singh
    Kumar, Ankit
    Kada, B.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (04) : 2975 - 2990
  • [6] Semantic and spatial-spectral feature fusion transformer network for the classification of hyperspectral image
    Xie, Erxin
    Chen, Na
    Peng, Jiangtao
    Sun, Weiwei
    Du, Qian
    You, Xinge
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1308 - 1322
  • [7] Spectral and Spatial Feature Fusion for Hyperspectral Image Classification
    Hao, Siyuan
    Xia, Yufeng
    Zhou, Lijian
    Ye, Yuanxin
    Wang, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] DSS-TRM: deep spatial-spectral transformer for hyperspectral image classification
    Liu, Bing
    Yu, Anzhu
    Gao, Kuiliang
    Tan, Xiong
    Sun, Yifan
    Yu, Xuchu
    EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 103 - 114
  • [9] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song L.
    Feng Z.
    Yang S.
    Zhang X.
    Jiao L.
    IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (09) : 1 - 1
  • [10] MultiScale spectral–spatial convolutional transformer for hyperspectral image classification
    Gong, Zhiqiang
    Zhou, Xian
    Yao, Wen
    IET Image Processing, 2024, 18 (13) : 4328 - 4340