Machine-learned molecular mechanics force fields from large-scale quantum chemical data

被引:1
|
作者
Takaba, Kenichiro [1 ,2 ]
Friedman, Anika J. [5 ]
Cavender, Chapin E. [4 ]
Behara, Pavan Kumar [3 ]
Pulido, Ivan [1 ]
Henry, Michael M. [1 ]
MacDermott-Opeskin, Hugo [6 ]
Iacovella, Christopher R. [1 ]
Nagle, Arnav M. [1 ,7 ]
Payne, Alexander Matthew [1 ,9 ]
Shirts, Michael R. [5 ]
Mobley, David L. [8 ]
Chodera, John D. [1 ]
Wang, Yuanqing [1 ,10 ,11 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA
[2] Asahi Kasei Pharm Corp, Pharmaceut Res Ctr, Adv Drug Discovery, Shizuoka 4102321, Japan
[3] Univ Calif Irvine, Ctr Neurotherapeut, Dept Pathol & Lab Med, Irvine, CA 92697 USA
[4] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA
[5] Univ Colorado Boulder, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[6] Open Mol Software Fdn, Davis, CA 95618 USA
[7] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[8] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[9] Mem Sloan Kettering Canc Ctr, Triinst PhD Program Chem Biol, New York, NY 10065 USA
[10] NYU, Simons Ctr Computat Phys Chem, New York, NY 10004 USA
[11] NYU, Ctr Data Sci, New York, NY 10004 USA
基金
美国国家科学基金会;
关键词
LENNARD-JONES PARAMETERS; COUPLING-CONSTANTS; EFFICIENT GENERATION; DYNAMICS SIMULATIONS; ANGULAR-DEPENDENCE; RESIDUAL DIPOLAR; NONBONDED MODEL; ATOMIC CHARGES; AM1-BCC MODEL; SIDE-CHAIN;
D O I
10.1039/d4sc00690a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of reliable and extensible molecular mechanics (MM) force fields-fast, empirical models characterizing the potential energy surface of molecular systems-is indispensable for biomolecular simulation and computer-aided drug design. Here, we introduce a generalized and extensible machine-learned MM force field, espaloma-0.3, and an end-to-end differentiable framework using graph neural networks to overcome the limitations of traditional rule-based methods. Trained in a single GPU-day to fit a large and diverse quantum chemical dataset of over 1.1 M energy and force calculations, espaloma-0.3 reproduces quantum chemical energetic properties of chemical domains highly relevant to drug discovery, including small molecules, peptides, and nucleic acids. Moreover, this force field maintains the quantum chemical energy-minimized geometries of small molecules and preserves the condensed phase properties of peptides and folded proteins, self-consistently parametrizing proteins and ligands to produce stable simulations leading to highly accurate predictions of binding free energies. This methodology demonstrates significant promise as a path forward for systematically building more accurate force fields that are easily extensible to new chemical domains of interest. A generalized and extensible machine-learned molecular mechanics force field trained on over 1.1 million QC data applicable for drug discovery applications. Figure reproduced from the arXiv:201001196 preprint under the arXiv non-exclusive license.
引用
收藏
页码:12861 / 12878
页数:18
相关论文
共 50 条
  • [1] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [2] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [3] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [4] Towards exact molecular dynamics simulations with machine-learned force fields
    Stefan Chmiela
    Huziel E. Sauceda
    Klaus-Robert Müller
    Alexandre Tkatchenko
    [J]. Nature Communications, 9
  • [5] Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments
    Unke, Oliver T.
    Stoehr, Martin
    Ganscha, Stefan
    Unterthiner, Thomas
    Maennel, Hartmut
    Kashubin, Sergii
    Ahlin, Daniel
    Gastegger, Michael
    Medrano Sandonas, Leonardo
    Berryman, Joshua T.
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    [J]. SCIENCE ADVANCES, 2024, 10 (14)
  • [6] Accurate Quantum Monte Carlo Forces for Machine-Learned Force Fields: Ethanol as a Benchmark
    Slootman, E.
    Poltavsky, I.
    Shinde, R.
    Cocomello, J.
    Moroni, S.
    Tkatchenko, A.
    Filippi, C.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (14) : 6020 - 6027
  • [7] Simulations and force fields with quantum mechanics/molecular mechanics and machine learning
    Yang, Weitao
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [8] Multidomain simulations of aluminum nitride with machine-learned force fields
    Behrendt, Drew
    Nascimento, Von Braun
    Rappe, Andrew M.
    [J]. PHYSICAL REVIEW B, 2024, 110 (03)
  • [9] Evaluating Molecular Mechanics Force Fields with a Quantum Chemical Approach
    Koes, David
    Vries, John
    [J]. BIOPHYSICAL JOURNAL, 2017, 112 (03) : 289A - 289A
  • [10] Towards spectroscopic accuracy in molecular dynamics simulations with machine-learned CCSD(T) force fields
    Chmiela, Stefan
    Sauceda, Huziel
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255