Machine-learned molecular mechanics force fields from large-scale quantum chemical data

被引:1
|
作者
Takaba, Kenichiro [1 ,2 ]
Friedman, Anika J. [5 ]
Cavender, Chapin E. [4 ]
Behara, Pavan Kumar [3 ]
Pulido, Ivan [1 ]
Henry, Michael M. [1 ]
MacDermott-Opeskin, Hugo [6 ]
Iacovella, Christopher R. [1 ]
Nagle, Arnav M. [1 ,7 ]
Payne, Alexander Matthew [1 ,9 ]
Shirts, Michael R. [5 ]
Mobley, David L. [8 ]
Chodera, John D. [1 ]
Wang, Yuanqing [1 ,10 ,11 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA
[2] Asahi Kasei Pharm Corp, Pharmaceut Res Ctr, Adv Drug Discovery, Shizuoka 4102321, Japan
[3] Univ Calif Irvine, Ctr Neurotherapeut, Dept Pathol & Lab Med, Irvine, CA 92697 USA
[4] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA
[5] Univ Colorado Boulder, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[6] Open Mol Software Fdn, Davis, CA 95618 USA
[7] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[8] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA
[9] Mem Sloan Kettering Canc Ctr, Triinst PhD Program Chem Biol, New York, NY 10065 USA
[10] NYU, Simons Ctr Computat Phys Chem, New York, NY 10004 USA
[11] NYU, Ctr Data Sci, New York, NY 10004 USA
基金
美国国家科学基金会;
关键词
LENNARD-JONES PARAMETERS; COUPLING-CONSTANTS; EFFICIENT GENERATION; DYNAMICS SIMULATIONS; ANGULAR-DEPENDENCE; RESIDUAL DIPOLAR; NONBONDED MODEL; ATOMIC CHARGES; AM1-BCC MODEL; SIDE-CHAIN;
D O I
10.1039/d4sc00690a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of reliable and extensible molecular mechanics (MM) force fields-fast, empirical models characterizing the potential energy surface of molecular systems-is indispensable for biomolecular simulation and computer-aided drug design. Here, we introduce a generalized and extensible machine-learned MM force field, espaloma-0.3, and an end-to-end differentiable framework using graph neural networks to overcome the limitations of traditional rule-based methods. Trained in a single GPU-day to fit a large and diverse quantum chemical dataset of over 1.1 M energy and force calculations, espaloma-0.3 reproduces quantum chemical energetic properties of chemical domains highly relevant to drug discovery, including small molecules, peptides, and nucleic acids. Moreover, this force field maintains the quantum chemical energy-minimized geometries of small molecules and preserves the condensed phase properties of peptides and folded proteins, self-consistently parametrizing proteins and ligands to produce stable simulations leading to highly accurate predictions of binding free energies. This methodology demonstrates significant promise as a path forward for systematically building more accurate force fields that are easily extensible to new chemical domains of interest. A generalized and extensible machine-learned molecular mechanics force field trained on over 1.1 million QC data applicable for drug discovery applications. Figure reproduced from the arXiv:201001196 preprint under the arXiv non-exclusive license.
引用
收藏
页码:12861 / 12878
页数:18
相关论文
共 50 条
  • [31] Machine-Learned Electronically Excited States with the MolOrbImage Generated from the Molecular Ground State
    Chen, Ziyong
    Yam, Vivian Wing-Wah
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, : 1955 - 1961
  • [32] An efficient multigrid strategy for large-scale molecular mechanics optimization
    Chen, Jingrun
    Garcia-Cervera, Carlos J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 342 : 29 - 42
  • [33] Large-scale quantum chemical molecular dynamics simulations on the formation dynamics of hydrogen by the chemical reactions of water
    Kubo, Momoji
    Sasaki, Yumiko
    Chiba, Keiko
    Qiang, Pei
    Rajjak, Abdul
    Tsuboi, Hideyuki
    Koyama, Michihisa
    Broclawik, Ewa
    Akutsu, Kazuyoshi
    Hirota, Masahiro
    Kitada, Masayoshi
    Hirata, Hajime
    Miyamoto, Akira
    [J]. HT2005: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2005, VOL 1, 2005, : 261 - 263
  • [34] Large-Scale Machine Learning Approaches for Molecular Biophysics
    Ramanathan, Arvind
    Chennubhotla, Chakra S.
    Agarwal, Pratul K.
    Stanley, Christopher B.
    [J]. BIOPHYSICAL JOURNAL, 2015, 108 (02) : 370A - 370A
  • [35] Stable Solid Molecular Hydrogen above 900 K from a Machine-Learned Potential Trained with Diffusion Quantum Monte Carlo
    Niu, Hongwei
    Yang, Yubo
    Jensen, Scott
    Holzmann, Markus
    Pierleoni, Carlo
    Ceperley, David M.
    [J]. PHYSICAL REVIEW LETTERS, 2023, 130 (07)
  • [36] Nuclear dynamics with accurate force fields from quantum mechanics
    Szalewicz, Krzysztof
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [37] Preface: Special Topic: From Quantum Mechanics to Force Fields
    Piquemal, Jean-Philip
    Jordan, Kenneth D.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (16):
  • [38] Machine learning based atom parameterization program for molecular mechanics force fields
    Charles, Murchtricia
    Brooks, Charles
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [39] Scrutinizing Molecular Mechanics Force Fields on the Submicrosecond Timescale with NMR Data
    Lange, Oliver F.
    van der Spoel, David
    de Groot, Bert L.
    [J]. BIOPHYSICAL JOURNAL, 2010, 99 (02) : 647 - 655
  • [40] Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics
    Mazziotti, David A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (08)