Lp-Boundedness of a Class of Bi-Parameter Pseudo-Differential Operators

被引:0
|
作者
Cheng, Jinhua [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
关键词
bi-parameter pseudo-differential operators; L-p-boundedness; cone decomposition; BMO space; MULTIPARAMETER;
D O I
10.3390/math12111653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, I explore a specific class of bi-parameter pseudo-differential operators characterized by symbols sigma(x(1),x(2),xi(1),xi(2)) falling within the product-type Hormander class S-rho,delta(m). This classification imposes constraints on the behavior of partial derivatives of sigma with respect to both spatial and frequency variables. Specifically, I demonstrate that for each multi-index alpha,beta, the inequality vertical bar partial derivative(alpha)(xi)partial derivative(beta)(x)sigma(x(1),x(2),xi(1),xi(2))vertical bar <= C-alpha,C-beta(1+vertical bar xi vertical bar)(m)Pi(2)(i=1)(1+vertical bar xi(i)vertical bar)(-rho|alpha i vertical bar delta|beta i vertical bar) is satisfied. My investigation culminates in a rigorous analysis of the L-p-boundedness of such pseudo-differential operators, thereby extending the seminal findings of C. Fefferman from 1973 concerning pseudo-differential operators within the Hormander class.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] On Lp-boundedness of Fourier Integral Operators
    Yang, Jie
    Wang, Guangqing
    Chen, Wenyi
    [J]. POTENTIAL ANALYSIS, 2022, 57 (02) : 167 - 179
  • [22] Boundedness of pseudo-differential operators on Hormander spaces
    Iancu, GM
    [J]. DIRECT AND INVERSE PROBLEMS OF MATHEMATICAL PHYSICS, 2000, 5 : 137 - 147
  • [23] Weighted boundedness of multilinear pseudo-differential operators
    Chen, Dazhao
    [J]. AIMS MATHEMATICS, 2021, 6 (11): : 12698 - 12712
  • [24] Endpoint boundedness of toroidal pseudo-differential operators
    Ramla, Benhamoud
    [J]. OPEN MATHEMATICS, 2024, 22 (01):
  • [25] THE BOUNDEDNESS OF MULTI-LINEAR AND MULTI-PARAMETER PSEUDO-DIFFERENTIAL OPERATORS
    Huang, Liang
    Chen, Jiao
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) : 801 - 815
  • [26] Lp α(Rn+1+)- boundedness of pseudo-differential operators involving the Weinstein transform
    Sartaj, Mohd
    Upadhyay, S. K.
    [J]. FILOMAT, 2024, 38 (03) : 957 - 978
  • [27] On Lp-boundedness of Fourier Integral Operators
    Jie Yang
    Guangqing Wang
    Wenyi Chen
    [J]. Potential Analysis, 2022, 57 : 167 - 179
  • [28] Boundedness of multi-parameter pseudo-differential operators on multi-parameter Lipschitz spaces
    He, Shaoyong
    Chen, Jiecheng
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (04) : 1665 - 1683
  • [29] LP-THEORY OF PSEUDO-DIFFERENTIAL OPERATORS
    KUMANOGO, H
    NAGASE, M
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (02): : 138 - &
  • [30] LP-Continuity for pseudo-differential operators
    Garello, Gianluca
    Morando, Alessandro
    [J]. PSEUDO-DIFFERENTIAL OPERATORS AND RELATED TOPICS, 2006, 164 : 79 - +