Growth Mechanism of N-Polar GaN on Vicinal N-Polar AlN Templates in Metal-Organic Vapor Phase Epitaxy

被引:0
|
作者
Miyamoto, Minagi [1 ]
Hanasaku, Koki [1 ]
Kowaki, Taketo [1 ]
Inahara, Daisuke [1 ]
Zazuli, Aina Hiyama [1 ]
Fujii, Kai [1 ]
Kimoto, Taisei [1 ]
Ninoki, Ryosuke [1 ]
Kurai, Satoshi [1 ]
Okada, Narihito [1 ]
Yamada, Yoichi [1 ]
机构
[1] Yamaguchi Univ, Grad Sch Sci & Technol Innovat, 2 16 1 Tokiwadai, Ube, Yamaguchi 7558611, Japan
关键词
metal-organic vapor phase epitaxies (MOVPEs); N-polar AlN; N-polar GaN; ELECTRON-MOBILITY TRANSISTORS; BREAKDOWN VOLTAGE; SUBSTRATE; GASES; HEMTS;
D O I
10.1002/pssa.202400055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, nitrogen-polar (N-polar) GaN/Al0.9Ga0.1N/aluminum nitride (AlN) structures are grown on a sapphire substrate with an offcut angle of 2.0 degrees from the m axis using metal-organic vapor phase epitaxy. Low-growth temperatures of N-polar GaN result in a shorter Ga-migration length, and 2D GaN growth is successfully achieved. The growth temperature and V/III ratio dependence are investigated for N-polar GaN. As a result, high-quality and flat N-polar GaN is successfully grown at a low temperature of 650 degrees C at a high V/III ratio and nonequilibrium conditions. Through X-ray reciprocal space mapping, N-polar GaN can be grown coherently on a N-polar AlN template at low temperatures around 650 degrees C, relaxing at higher temperatures. N-polar GaN is successfully grown 2D at low temperatures. The optimum V/III ratio depends on the growth temperature, with lower V/III ratios suitable for growth temperatures of 800 degrees C and higher V/III ratios for 650 degrees C. The metal-organic vapor phase epitaxy method shows superiority in the growth of N-polar GaN rather than that of metal-polar GaN.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Molecular beam epitaxy of N-polar InGaN
    Nath, Digbijoy N.
    Gur, Emre
    Ringel, Steven A.
    Rajan, Siddharth
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (07)
  • [42] C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition
    赵颖
    许晟瑞
    林志宇
    张进成
    姜腾
    付梦笛
    朱家铎
    陆琴
    郝跃
    [J]. Chinese Physics Letters, 2016, 33 (12) : 142 - 145
  • [43] Growth Control of N-Polar GaN in Plasma-Assisted Molecular Beam Epitaxy
    Mizerov, A. M.
    Jmerik, V. N.
    Kaibyshev, V. K.
    Komissarova, T. A.
    Masalov, S. A.
    Sitnikova, A. A.
    Ivanov, S. V.
    [J]. ACTA PHYSICA POLONICA A, 2008, 114 (05) : 1253 - 1258
  • [44] Growth instability of N-polar GaN on vicinal SiC substrate using plasma-assisted molecular beam epitaxy
    Huo, Lili
    Lingaparthi, R.
    Dharmarasu, N.
    Radhakrishnan, K.
    [J]. Thin Solid Films, 2024, 808
  • [45] Growth and characterization of N-polar InGaN/GaN multiquantum wells
    Keller, S.
    Fichtenbaum, N. A.
    Furukawa, M.
    Speck, J. S.
    DenBaars, S. P.
    Mishra, U. K.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (19)
  • [46] The Yellow Luminescence Origin of N-Polar GaN Film Grown by Metal Organic Chemical Vapor Deposition
    Zhao, Ying
    Xu, Shengrui
    Feng, Lansheng
    Lin, Zhiyu
    Li, Peixian
    Zhang, Jincheng
    Hao, Yue
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2020, 9 (05)
  • [47] Optimization of N-polar GaN growth on bulk GaN substrate by MOCVD
    Wang, Xuewei
    Xu, Shengrui
    Du, Jinjuan
    Peng, Ruoshi
    Fan, Xiaomeng
    Zhao, Ying
    Li, Wen
    Zhang, Jincheng
    Hao, Yue
    [J]. MATERIALS LETTERS, 2019, 253 : 314 - 316
  • [48] SURFACTANT EFFECT OF In ON THE MOVPE GROWTH OF Al- AND N-POLAR AlN
    Zhuang, Qinqin
    Kang, Junyong
    Li, Shuping
    Lin, Wei
    [J]. SURFACE REVIEW AND LETTERS, 2017, 24 (06)
  • [49] N-polar GaN Film Epitaxy on Sapphire Substrate without Intentional Nitridation
    Su, Zhaole
    Li, Yangfeng
    Hu, Xiaotao
    Song, Yimeng
    Kong, Rui
    Deng, Zhen
    Ma, Ziguang
    Du, Chunhua
    Wang, Wenxin
    Jia, Haiqiang
    Chen, Hong
    Jiang, Yang
    [J]. MATERIALS, 2022, 15 (09)
  • [50] Ultra-high silicon doped N-polar GaN contact layers grown by metal-organic chemical vapor deposition
    Hatui, N.
    Krishna, A.
    Li, H.
    Gupta, C.
    Romanczyk, B.
    Acker-James, D.
    Ahmadi, E.
    Keller, S.
    Mishra, U. K.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (09)