Cerberus: Triple Mode Acceleration of Sparse Matrix and Vector Multiplication

被引:1
|
作者
Hwang, Soojin [1 ]
Baek, Daehyeon [1 ]
Park, Jongse [1 ]
Huh, Jaehyuk [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Comp, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
Sparse Matrix-Vector Multiplication (SpMV); accelerator;
D O I
10.1145/3653020
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The multiplication of sparse matrix and vector (SpMV) is one of the most widely used kernels in high-performance computing as well as machine learning acceleration for sparse neural networks. The design space of SpMV accelerators has two axes: algorithm and matrix representation. There have been two widely used algorithms and data representations. Two algorithms, scalar multiplication and dot product, can be combined with two sparse data representations, compressed sparse and bitmap formats for the matrix and vector. Although the prior accelerators adopted one of the possible designs, it is yet to be investigated which design is the best one across different hardware resources and workload characteristics. This paper first investigates the impact of design choices with respect to the algorithm and data representation. Our evaluation shows that no single design always outperforms the others across different workloads, but the two best designs (i.e., compressed sparse format and bitmap format with dot product) have complementary performance with trade-offs incurred by the matrix characteristics. Based on the analysis, this study proposes Cerberus, a triple-mode accelerator supporting two sparse operation modes in addition to the base dense mode. To allow such multi-mode operation, it proposes a prediction model based on matrix characteristics under a given hardware configuration, which statically selects the best mode for a given sparse matrix with its dimension and density information. Our experimental results show that Cerberus provides 12.1x performance improvements from a dense-only accelerator, and 1.5x improvements from a fixed best SpMV design.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] High performance sparse matrix-vector multiplication on FPGA
    Zou, Dan
    Dou, Yong
    Guo, Song
    Ni, Shice
    IEICE ELECTRONICS EXPRESS, 2013, 10 (17):
  • [42] Processor-efficient sparse matrix-vector multiplication
    Heath, LS
    Ribbens, CJ
    Pemmaraju, SV
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (3-4) : 589 - 608
  • [43] On Implementing Sparse Matrix Multi-Vector Multiplication on GPUs
    Abu-Sufah, Walid
    Ahmad, Khalid
    2014 IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, 2014 IEEE 6TH INTL SYMP ON CYBERSPACE SAFETY AND SECURITY, 2014 IEEE 11TH INTL CONF ON EMBEDDED SOFTWARE AND SYST (HPCC,CSS,ICESS), 2014, : 1117 - 1124
  • [44] Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication
    Yilmaz, Buse
    Aktemur, Baris
    Garzaran, Maria J.
    Kamin, Sam
    Kirac, Furkan
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2016, 13 (01)
  • [45] Load-balancing in sparse matrix-vector multiplication
    Nastea, SG
    Frieder, O
    ElGhazawi, T
    EIGHTH IEEE SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 1996, : 218 - 225
  • [46] Energy Evaluation of Sparse Matrix-Vector Multiplication on GPU
    Benatia, Akrem
    Ji, Weixing
    Wang, Yizhuo
    Shi, Feng
    2016 SEVENTH INTERNATIONAL GREEN AND SUSTAINABLE COMPUTING CONFERENCE (IGSC), 2016,
  • [47] Sparse Matrix-Vector Multiplication Based on Online Arithmetic
    Cherati, Sahar Moradi
    Jaberipur, Ghassem
    Sousa, Leonel
    IEEE ACCESS, 2024, 12 : 87653 - 87664
  • [48] Sparse matrix-vector multiplication on network-on-chip
    Sun, C-C
    Goetze, J.
    Jheng, H-Y
    Ruan, S-J
    ADVANCES IN RADIO SCIENCE, 2010, 8 : 289 - 294
  • [49] Communication balancing in parallel sparse matrix-vector multiplication
    Bisseling, RH
    Meesen, W
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 21 : 47 - 65
  • [50] Optimization by Runtime Specialization for Sparse Matrix-Vector Multiplication
    Kamin, Sam
    Garzaran, Maria Jesus
    Aktemur, Baris
    Xu, Danqing
    Yilmaz, Buse
    Chen, Zhongbo
    ACM SIGPLAN NOTICES, 2015, 50 (03) : 93 - 102