Functional quantile regression with missing data in reproducing kernel Hilbert space

被引:0
|
作者
Yu, Xiao-Ge [1 ]
Liang, Han-Ying [1 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic distribution; functional quantile regression; hypothesis test; reproducing kernel Hilbert space; variable selection; VARIABLE SELECTION; PREDICTION;
D O I
10.1080/03610926.2024.2392857
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We, in this article, focus on functional partially linear quantile regression, where the observations are missing at random, which allows the response or covariates or response and covariates simultaneously missing. Estimation of the unknown function is done based on reproducing kernel method. Under suitable assumptions, we discuss consistency with rates of the estimators, and establish asymptotic normality of the estimator for the parameter. At the same time, we study hypothesis test of the parameter, and prove asymptotic distributions of restricted estimators of the parameter and test statistic under null hypothesis and local alternative hypothesis, respectively. Also, we study variable selection of the linear part of the model. By simulation and real data, finite sample performance of the proposed methods is analyzed.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Kim, Choongrak
    Yang, Hojin
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 454 - 462
  • [22] Least squares kernel ensemble regression in Reproducing Kernel Hilbert Space
    Shen, Xiang-Jun
    Dong, Yong
    Gou, Jian-Ping
    Zhan, Yong-Zhao
    Fan, Jianping
    [J]. NEUROCOMPUTING, 2018, 311 : 235 - 244
  • [23] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Choongrak Kim
    Hojin Yang
    [J]. Journal of the Korean Statistical Society, 2019, 48 : 454 - 462
  • [24] Sparse high-dimensional semi-nonparametric quantile regression in a reproducing kernel Hilbert space
    Wang, Yue
    Zhou, Yan
    Li, Rui
    Lian, Heng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 168
  • [25] A Reproducing Kernel Hilbert Space Framework for Functional Classification
    Sang, Peijun
    Kashlak, Adam B.
    Kong, Linglong
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 1000 - 1008
  • [26] Distribution regression model with a Reproducing Kernel Hilbert Space approach
    Bui Thi Thien Trang
    Loubes, Jean-Michel
    Risser, Laurent
    Balaresque, Patricia
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (09) : 1955 - 1977
  • [27] Structured functional additive regression in reproducing kernel Hilbert spaces
    Zhu, Hongxiao
    Yao, Fang
    Zhang, Hao Helen
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (03) : 581 - 603
  • [28] Partially functional linear regression in reproducing kernel Hilbert spaces
    Cui, Xia
    Lin, Hongmei
    Lian, Heng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [29] On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power
    Gallego-Castillo, Cristobal
    Bessa, Ricardo
    Cavalcante, Laura
    Lopez-Garcia, Oscar
    [J]. ENERGY, 2016, 113 : 355 - 365
  • [30] Approximate nonparametric quantile regression in reproducing kernel Hilbert spaces via random projection
    Zhang, Fode
    Li, Rui
    Lian, Heng
    [J]. INFORMATION SCIENCES, 2021, 547 (547) : 244 - 254