Distribution regression model with a Reproducing Kernel Hilbert Space approach

被引:2
|
作者
Bui Thi Thien Trang [1 ]
Loubes, Jean-Michel [1 ]
Risser, Laurent [1 ]
Balaresque, Patricia [2 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Fac Med Purpan, Lab Anthropol Mol & Imagerie Synth AMIS, Toulouse, France
关键词
Regression; Reproducing Kernel Hilbert space; Wasserstein distance; transient evoked otoscoutic emission; AGE-RELATED-CHANGES;
D O I
10.1080/03610926.2019.1658782
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a new distribution regression model for probability distributions. This model is based on a Reproducing Kernel Hilbert Space (RKHS) regression framework, where universal kernels are built using Wasserstein distances for distributions belonging to and omega is a compact subspace of . We prove the universal kernel property of such kernels and use this setting to perform regressions on functions. Different regression models are first compared with the proposed one on simulated functional data for both one-dimensional and two-dimensional distributions. We then apply our regression model to transient evoked otoascoutic emission (TEOAE) distribution responses and real predictors of the age.
引用
收藏
页码:1955 / 1977
页数:23
相关论文
共 50 条
  • [1] A REPRODUCING KERNEL HILBERT SPACE APPROACH TO FUNCTIONAL LINEAR REGRESSION
    Yuan, Ming
    Cai, T. Tony
    [J]. ANNALS OF STATISTICS, 2010, 38 (06): : 3412 - 3444
  • [2] Fast quantile regression in reproducing kernel Hilbert space
    Zheng, Songfeng
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 568 - 588
  • [3] Fast quantile regression in reproducing kernel Hilbert space
    Songfeng Zheng
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 568 - 588
  • [4] Reproducing Kernel Hilbert Space Approach to Multiresponse Smoothing Spline Regression Function
    Lestari, Budi
    Chamidah, Nur
    Aydin, Dursun
    Yilmaz, Ersin
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [5] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    Benelmadani, D.
    Benhenni, K.
    Louhichi, S.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2020, 72 (06) : 1479 - 1500
  • [6] The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations
    D. Benelmadani
    K. Benhenni
    S. Louhichi
    [J]. Annals of the Institute of Statistical Mathematics, 2020, 72 : 1479 - 1500
  • [7] Kernel partial least squares regression in Reproducing Kernel Hilbert Space
    Rosipal, R
    Trejo, LJ
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 97 - 123
  • [8] Least squares kernel ensemble regression in Reproducing Kernel Hilbert Space
    Shen, Xiang-Jun
    Dong, Yong
    Gou, Jian-Ping
    Zhan, Yong-Zhao
    Fan, Jianping
    [J]. NEUROCOMPUTING, 2018, 311 : 235 - 244
  • [9] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Choongrak Kim
    Hojin Yang
    [J]. Journal of the Korean Statistical Society, 2019, 48 : 454 - 462
  • [10] Diagnostic measures for kernel ridge regression on reproducing kernel Hilbert space
    Kim, Choongrak
    Yang, Hojin
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 454 - 462