On Wigner's theorem in complex smooth normed spaces

被引:0
|
作者
Liu, Jiabin [1 ]
Huang, Xujian [2 ]
Wang, Shuming [1 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Inst Operat Res & Syst Engn, Coll Sci, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Wigner's theorem; Isometry; Phase-isometry; Smooth space; ISOMETRIES; VERSION; PROOF;
D O I
10.1016/j.jmaa.2024.128404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we present a generalization of Wigner's theorem. Let X and Y be complex normed spaces with Y being smooth. We show that a surjective mapping f : X -> Y satisfies {II f (x) + beta f (y)II : beta is an element of T-n} = {II x + beta yII : beta is an element of T-n}, x, y is an element of X, where n >= 3 is a positive integer and T-n is the set of the n th roots of unity, if and only if there exists a phase function sigma : X -> T-n such that sigma<middle dot> f is a linear or an anti -linear isometry. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] The Uniform Boundedness Theorem in Asymmetric Normed Spaces
    Alegre, C.
    Romaguera, S.
    Veeramani, P.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [32] CHARACTERIZATION OF SMOOTH NORMED LINEAR-SPACES
    PAI, DV
    JOURNAL OF APPROXIMATION THEORY, 1976, 17 (04) : 315 - 320
  • [33] On a Cosine Function Defined for Smooth Normed Spaces
    Balestro, Vitor
    Shonoda, Emad
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (01) : 21 - 39
  • [34] Wigner-Eckart theorem in the inductive spaces
    Milosevic, I
    Vukovic, T
    Marinkovic, T
    Damnjanovic, M
    ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 2004, 19 (3-4): : 297 - 300
  • [35] CHARACTERIZABILITY OF PAIRS OF COMPLEX NORMED SPACES
    FEIZULLAEV, RB
    MATHEMATICS OF THE USSR-SBORNIK, 1981, 115 (03): : 395 - 402
  • [36] A Mazur-Ulam theorem for probabilistic normed spaces
    Cobzas, Stefan
    AEQUATIONES MATHEMATICAE, 2009, 77 (1-2) : 197 - 205
  • [37] The Schauder-Tikhonov theorem in countably normed spaces
    Zubelevich, O. E.
    MATHEMATICAL NOTES, 2011, 90 (1-2) : 288 - 290
  • [38] DEICKE'S THEOREM ON COMPLEX MINKOWSKI SPACES
    Yan, Rongmu
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (01): : 69 - 75
  • [39] Wigner's theorem in atomic Lp-spaces (p &gt; 0)
    Huang, Xujian
    Tan, Dongni
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (3-4): : 411 - 418
  • [40] The Schauder-Tikhonov theorem in countably normed spaces
    O. É. Zubelevich
    Mathematical Notes, 2011, 90