On Wigner's theorem in complex smooth normed spaces

被引:0
|
作者
Liu, Jiabin [1 ]
Huang, Xujian [2 ]
Wang, Shuming [1 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Inst Operat Res & Syst Engn, Coll Sci, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Wigner's theorem; Isometry; Phase-isometry; Smooth space; ISOMETRIES; VERSION; PROOF;
D O I
10.1016/j.jmaa.2024.128404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we present a generalization of Wigner's theorem. Let X and Y be complex normed spaces with Y being smooth. We show that a surjective mapping f : X -> Y satisfies {II f (x) + beta f (y)II : beta is an element of T-n} = {II x + beta yII : beta is an element of T-n}, x, y is an element of X, where n >= 3 is a positive integer and T-n is the set of the n th roots of unity, if and only if there exists a phase function sigma : X -> T-n such that sigma<middle dot> f is a linear or an anti -linear isometry. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条