On Wigner's theorem in complex smooth normed spaces

被引:0
|
作者
Liu, Jiabin [1 ]
Huang, Xujian [2 ]
Wang, Shuming [1 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Inst Operat Res & Syst Engn, Coll Sci, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Wigner's theorem; Isometry; Phase-isometry; Smooth space; ISOMETRIES; VERSION; PROOF;
D O I
10.1016/j.jmaa.2024.128404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we present a generalization of Wigner's theorem. Let X and Y be complex normed spaces with Y being smooth. We show that a surjective mapping f : X -> Y satisfies {II f (x) + beta f (y)II : beta is an element of T-n} = {II x + beta yII : beta is an element of T-n}, x, y is an element of X, where n >= 3 is a positive integer and T-n is the set of the n th roots of unity, if and only if there exists a phase function sigma : X -> T-n such that sigma<middle dot> f is a linear or an anti -linear isometry. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On Wigner’s theorem in smooth normed spaces
    Dijana Ilišević
    Aleksej Turnšek
    Aequationes mathematicae, 2020, 94 : 1257 - 1267
  • [2] On Wigner's theorem in smooth normed spaces
    Ilisevic, Dijana
    Turnsek, Aleksej
    AEQUATIONES MATHEMATICAE, 2020, 94 (06) : 1257 - 1267
  • [3] A Variant of Wigner's Theorem in Normed Spaces
    Ilisevic, Dijana
    Turnsek, Aleksej
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
  • [4] A Variant of Wigner’s Theorem in Normed Spaces
    Dijana Ilišević
    Aleksej Turnšek
    Mediterranean Journal of Mathematics, 2021, 18
  • [5] On Wigner's theorem in strictly convex normed spaces
    Ilisevic, Dijana
    Turnsek, Aleksej
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2020, 97 (3-4): : 393 - 401
  • [6] THE WIGNER PROPERTY OF SMOOTH NORMED SPACES
    Huang, Xujian
    Liu, Jiabin
    Wang, Shuming
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 110 (03) : 545 - 553
  • [7] Min-Phase-Isometries and Wigner's Theorem on Real Normed Spaces
    Huang, Xujian
    Tan, Dongni
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [8] Min-Phase-Isometries and Wigner’s Theorem on Real Normed Spaces
    Xujian Huang
    Dongni Tan
    Results in Mathematics, 2022, 77
  • [9] On normed spaces with the Wigner Property
    Ruidong Wang
    Dariusz Bugajewski
    Annals of Functional Analysis, 2020, 11 : 523 - 539
  • [10] On normed spaces with the Wigner Property
    Wang, Ruidong
    Bugajewski, Dariusz
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 523 - 539