Benchmarking Methods for PROTAC Ternary Complex Structure Prediction

被引:5
|
作者
Rovers, Evianne [1 ,2 ]
Schapira, Matthieu [1 ,2 ]
机构
[1] Struct Genom Consortium, Toronto, ON M5G 1L7, Canada
[2] Univ Toronto, Dept Pharmacol, Toronto, ON M5G 1L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ANTIBODY-MEDIATED DELIVERY; PROTEIN; GROMACS;
D O I
10.1021/acs.jcim.4c00426
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Proteolysis targeting chimeras (PROTACs) are bifunctional compounds that recruit an E3 ligase to a target protein to induce ubiquitination and degradation of the target. Rational optimization of PROTAC requires a structural model of the ternary complex. In the absence of an experimental structure, computational tools have emerged that attempt to predict PROTAC ternary complexes. Here, we systematically benchmark three commonly used tools: PRosettaC, MOE, and ICM. We find that these PROTAC-focused methods produce an array of ternary complex structures, including some that are observed experimentally, but also many that significantly deviate from the crystal structure. Molecular dynamics simulations show that PROTAC complexes may exist in a multiplicity of configurational states and question the use of experimentally observed structures as a reference for accurate predictions. The pioneering computational tools benchmarked here highlight the promises and challenges in the field and may be more valuable when guided by clear structural and biophysical data. The benchmarking data set that we provide may also be valuable for evaluating other and future computational tools for ternary complex modeling.
引用
收藏
页码:6162 / 6173
页数:12
相关论文
共 50 条
  • [1] Benchmarking of structure refinement methods for protein complex models
    Verburgt, Jacob
    Kihara, Daisuke
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2022, 90 (01) : 83 - 95
  • [2] Measurement of PROTAC ternary complex formation using the switchSENSE Y-structure and FRET signals
    Mahadevan, Aishwarya
    Solda, Alice
    Ponzo, Irene
    Weber, Thomas
    Faherty, Jonathan
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 7 - 7
  • [3] High Accuracy Prediction of PROTAC Complex Structures
    Ignatov, Mikhail
    Jindal, Akhil
    Kotelnikov, Sergei
    Beglov, Dmitri
    Posternak, Ganna
    Tang, Xiaojing
    Maisonneuve, Pierre
    Poda, Gennady
    Batey, Robert A.
    Sicheri, Frank
    Whitty, Adrian
    Tonge, Peter J.
    Vajda, Sandor
    Kozakov, Dima
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (13) : 7123 - 7135
  • [4] Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization
    Schwalm, Martin P.
    Kraemer, Andreas
    Doelle, Anja
    Weckesser, Janik
    Yu, Xufen
    Jin, Jian
    Saxena, Krishna
    Knapp, Stefan
    CELL CHEMICAL BIOLOGY, 2023, 30 (07) : 753 - +
  • [5] Rationalizing PROTAC-Mediated Ternary Complex Formation Using Rosetta
    Bai, Nan
    Miller, Sven A.
    Andrianov, Grigorii, V
    Yates, Max
    Kirubakaran, Palani
    Karanicolas, John
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (03) : 1368 - 1382
  • [6] Impact of PROTAC Linker Plasticity on the Solution Conformations and Dissociation of the Ternary Complex
    Weerakoon, Dhanushka
    Carbajo, Rodrigo J.
    De Maria, Leonardo
    Tyrchan, Christian
    Zhao, Hongtao
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (02) : 340 - 349
  • [7] Optimization of PROTAC Ternary Complex Using DNA Encoded Library Approach
    Chen, Qiuxia
    Liu, Chuan
    Wang, Wei
    Meng, Xiaoyun
    Cheng, Xuemin
    Li, Xianyang
    Cai, Longying
    Luo, Linfu
    He, Xu
    Qu, Huan
    Luo, Jing
    Wei, Hong
    Gao, Sen
    Liu, Guansai
    Wan, Jinqiao
    Israel, David I.
    Li, Jin
    Dou, Dengfeng
    ACS CHEMICAL BIOLOGY, 2023, 18 (01) : 25 - 33
  • [8] Interplay of PROTAC Complex Dynamics for Undruggable Targets: Insights into Ternary Complex Behavior and Linker Design
    Kumar, Harish
    Sobhia, Masilamani Elizabeth
    ACS MEDICINAL CHEMISTRY LETTERS, 2024, 15 (08): : 1306 - 1318
  • [9] Systematic benchmarking of deep-learning methods for tertiary RNA structure prediction
    Bahai, Akash
    Kwoh, Chee Keong
    Mu, Yuguang
    Li, Yinghui
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (12)
  • [10] CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction
    Puton, Tomasz
    Kozlowski, Lukasz P.
    Rother, Kristian M.
    Bujnicki, Janusz M.
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07) : 4307 - 4323