A Collaborative Filtering-Based Recommender Systems approach for Multifarious applications

被引:0
|
作者
Shetty, Aryan [1 ]
Shetye, Aryan [1 ]
Shukla, Praful [1 ]
Singh, Aditya [1 ]
Vhatkar, Sangeeta [1 ]
机构
[1] Thakur Coll Engn & Technol, Dept Informat Technol, Mumbai, India
关键词
Recommender Systems; Collaborative Filtering; User Based CF; Item Based CF;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recommender systems are crucial in today's IT landscape, enhancing user experiences in various industries. Collaborative filtering (CF) is a key approach, using historical interaction data to predict user preferences. This paper presents CF advancements, with a focus on latent factor models that represent users and items in a compact feature space. It also addresses sparsity issues with techniques like neighborhood-based approaches and content augmentation. Contextual CF, which incorporates temporal and contextual dynamics, is explored through methods like matrix factorization with side information and session -based recommendation. Evaluation metrics such as MAE and RMSE, along with novel ranking -based metrics, provide a comprehensive assessment of recommendation quality. In this paper we outline cutting-edge CF techniques, showcasing their mechanisms and applications and were able to achieve accurate recommendations of almost 90% using MAE and RMSE metrics. By integrating latent factor modeling, sparsity mitigation, contextual enrichment, and advanced evaluation, it paves the way for the next generation of personalized recommendation systems, tailored to meet evolving demands in modern information environments.
引用
收藏
页码:478 / 485
页数:8
相关论文
共 50 条
  • [31] Comparison of Fuzzy Co-clustering Methods in Collaborative Filtering-Based Recommender System
    Kondo, Tadafumi
    Kanzawa, Yuchi
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2017), 2017, 10571 : 103 - 116
  • [32] An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering
    da Silva, Edjalma Queiroz
    Camilo-Junior, Celso G.
    Pascoal, Luiz Mario L.
    Rosa, Thierson C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 53 : 204 - 218
  • [33] An evolutionary approach for combining results of Recommender Systems techniques based on Collaborative Filtering
    da Silva, Edjalma Q.
    Camilo Junior, Celso G.
    Pascoal, Luiz Mario L.
    Rosa, Thierson C.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 959 - 966
  • [34] A New Similarity Measure-Based Collaborative Filtering Approach for Recommender Systems
    Wang, Wei
    Lu, Jie
    Zhang, Guangquan
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISKE 2013), 2014, 277 : 443 - 452
  • [35] Chinese Zero Pronoun Resolution: A Collaborative Filtering-based Approach
    Yin, Qingyu
    Zhang, Weinan
    Zhang, Yu
    Liu, Ting
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2020, 19 (01)
  • [36] A survey of collaborative filtering based social recommender systems
    Yang, Xiwang
    Guo, Yang
    Liu, Yong
    Steck, Harald
    COMPUTER COMMUNICATIONS, 2014, 41 : 1 - 10
  • [37] Recommender systems based on collaborative filtering and resource allocation
    Javari A.
    Gharibshah J.
    Jalili M.
    Social Network Analysis and Mining, 2014, 4 (01) : 1 - 11
  • [38] Incorporating recklessness to collaborative filtering based recommender systems
    Perez-Lopez, Diego
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    Duenas-Lerin, Jorge
    INFORMATION SCIENCES, 2024, 679
  • [39] Deep Matrix Factorization Approach for Collaborative Filtering Recommender Systems
    Lara-Cabrera, Raul
    Gonzalez-Prieto, Angel
    Ortega, Fernando
    APPLIED SCIENCES-BASEL, 2020, 10 (14):
  • [40] Research on Improved Collaborative Filtering-Based Mobile E-Commerce Personalized Recommender System
    Wu, Jiyi
    Ping, Lingdi
    Wang, Han
    Lin, Zhijie
    Zhang, Qifei
    2008 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2008, : 143 - +