Recommender systems based on collaborative filtering and resource allocation

被引:27
|
作者
Javari A. [1 ]
Gharibshah J. [1 ]
Jalili M. [1 ,2 ]
机构
[1] Department of Computer Engineering, Sharif University of Technology, Tehran
[2] School of Electrical and Computer Engineering, RMIT University, Melbourne
关键词
Collaborative filtering; Information theory; Recommender systems; Resource allocation; Similarity; Social networks;
D O I
10.1007/s13278-014-0234-0
中图分类号
学科分类号
摘要
Recommendation systems are important part of electronic commerce, where appropriate items are recommended to potential users. The most common algorithms used for constructing recommender systems in commercial applications are collaborative filtering methods and their variants, which is mainly due to their simple implementation. In these methods, structural features of bipartite network of users and items are used and potential items are recommended to the users based on a similarity measure that shows how similar the behavior of the users is. Indeed, the performance of the memory-based CF algorithms heavily depends on the quality of similarities obtained among users/items. As the obtained similarities are more reliable, better performance for the recommender systems is expected. In this paper, we propose three models to extract reliability of similarities estimated in classic recommenders. We incorporate the obtained reliabilities to improve performance of the recommender systems. In the proposed algorithms for reliability extraction, a number of elements are taken into account including the structure of the user-item bipartite network, the individual profile of the users, i.e., how many items they have rated, and that of the items, i.e., how many users have rated them. Among the proposed methods, the method based on resource allocation provides the highest performance as compared to others. Our numerical results on two benchmark datasets (Movielens and Netflix) shows that employing resource allocation in classical recommenders significantly improves their performance. These results are of great importance since including resource allocation in the systems does not increase their computational complexity. © 2014, Springer-Verlag Wien.
引用
收藏
页码:1 / 11
相关论文
共 50 条
  • [1] Tag Based Collaborative Filtering for Recommender Systems
    Liang, Huizhi
    Xu, Yue
    Li, Yuefeng
    Nayak, Richi
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, PROCEEDINGS, 2009, 5589 : 666 - 673
  • [2] Recommender Systems and Collaborative Filtering
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    APPLIED SCIENCES-BASEL, 2020, 10 (20):
  • [3] Collaborative filtering recommender systems
    Ekstrand M.D.
    Riedl J.T.
    Konstan J.A.
    Foundations and Trends in Human-Computer Interaction, 2010, 4 (02): : 81 - 173
  • [4] A survey of collaborative filtering based social recommender systems
    Yang, Xiwang
    Guo, Yang
    Liu, Yong
    Steck, Harald
    COMPUTER COMMUNICATIONS, 2014, 41 : 1 - 10
  • [5] Incorporating recklessness to collaborative filtering based recommender systems
    Perez-Lopez, Diego
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    Duenas-Lerin, Jorge
    INFORMATION SCIENCES, 2024, 679
  • [6] Optimizing collaborative filtering recommender systems
    Min, SH
    Han, I
    ADVANCES IN WEB INTELLIGENCE, PROCEEDINGS, 2005, 3528 : 313 - 319
  • [7] Collaborative filtering recommender systems taxonomy
    Harris Papadakis
    Antonis Papagrigoriou
    Costas Panagiotakis
    Eleftherios Kosmas
    Paraskevi Fragopoulou
    Knowledge and Information Systems, 2022, 64 : 35 - 74
  • [8] An improvement to collaborative filtering for recommender systems
    Weng, Li-Tung
    Xu, Yue
    Li, Yuefeng
    Nayak, Richi
    International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 1, Proceedings, 2006, : 792 - 795
  • [9] A collaborative filtering recommender systems: Survey
    Aljunid, Mohammed Fadhel
    Manjaiah, D. H.
    Hooshmand, Mohammad Kazim
    Ali, Wasim A.
    Shetty, Amrithkala M.
    Alzoubah, Sadiq Qaid
    NEUROCOMPUTING, 2025, 617
  • [10] Evaluation of Collaborative Filtering for Recommender Systems
    Al-Ghamdi, Maryam
    Elazhary, Hanan
    Mojahed, Aalaa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 559 - 565