PREDICTIVE VALIDITY OF MRI-BASED TEXTURE FEATURES OF INFRAPATELLAR FAT PAD USING MACHINE LEARNING METHODS FOR KNEE OA: DATA FROM THE FNIH OA BIOMARKERS CONSORTIUM

被引:0
|
作者
Zhang, Mengdi [1 ]
Cao, Peihua [1 ]
Li, Shengfa [1 ]
Li, Jia [2 ]
Dang, Qin [1 ]
Lu, Yao [1 ]
Ding, Changhai [1 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Clin Res Ctr, Guangzhou, Guangdong, Peoples R China
[2] Southern Med Univ, Nanfang Hosp, Guangzhou, Guangdong, Peoples R China
关键词
D O I
暂无
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
503
引用
收藏
页码:S352 / S353
页数:2
相关论文
共 35 条
  • [21] ASSOCIATIONS AMONG A SPECTRUM OF KNEE OSTEOARTHRITIS FEATURES ON MRI INFORM ABOUT POTENTIAL PATHOGENIC MECHANISMS, DATA FROM THE OAI/FNIH BIOMARKERS CONSORTIUM
    van Spil, W. E.
    Deveza, L. A.
    Hunter, D. J.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S463 - S463
  • [22] Prediction model for knee osteoarthritis using magnetic resonance-based radiomic features from the infrapatellar fat pad: data from the osteoarthritis initiative
    Yu, Keyan
    Ying, Jia
    Zhao, Tianyun
    Lei, Lan
    Zhong, Lijie
    Hu, Jiaping
    Zhou, Juin W.
    Huang, Chuan
    Zhang, Xiaodong
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (01) : 352 - +
  • [23] DOES (CHANGE IN) INFRA-PATELLAR FAT PAD VOLUME AND MRI SIGNAL PREDICT SYMPTOMATIC AND STRUCTURAL PROGRESSION OF KNEE OSTEOARTHRITIS? - DATA FROM THE FNIH BIOMARKER CONSORTIUM COHORT
    Ruhdorfer, A. S.
    Hunter, D. J.
    Wirth, W.
    Dannhauer, T.
    Doerrenberg, J.
    Haniel, F.
    Petersohn, T.
    Eckstein, F.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S289 - S290
  • [24] PERIPHERAL BLOOD DNA METHYLATION-BASED MACHINE LEARNING MODELS ARE PREDICTIVE OF FUTURE KNEE OA PROGRESSION: BIOSPECIMENS AND DATA FROM THE OSTEOARTHRITIS INITIATIVE AND JOHNSTON COUNTY OSTEOARTHRITIS PROJECT
    Sturdy, C.
    Dunn, C.
    Velasco, C.
    Schlupp, L.
    Prinz, E.
    Arbeeva, L.
    Golightly, Y.
    Nelson, A.
    Jeffries, M.
    OSTEOARTHRITIS AND CARTILAGE, 2022, 30 : S91 - S92
  • [25] Application of Machine Learning Methods to Predict the Risk of Rapid Pain Progression in Patients with Knee OA. Study Using Patients from the OAI and PROCOAC
    Rego-Perez, Ignacio
    Rodriguez-Valle, Isabel
    Fernandez-Tajes, Juan
    Balboa-Barreiro, Vanesa
    Fraga-Seijas, Carlota
    del Carmen de Andres, Maria
    Calamia, Valentina
    Fernandez-Puente, Patricia
    Veronese, Nicola
    Ruiz-Romero, Cristina
    Oreiro, Natividad
    Blanco, Francisco J.
    ARTHRITIS & RHEUMATOLOGY, 2024, 76 : 4241 - 4243
  • [26] Superolateral Hoffa’s fat pad (SHFP) oedema and patellar cartilage volume loss: quantitative analysis using longitudinal data from the Foundation for the National Institute of Health (FNIH) Osteoarthritis Biomarkers Consortium
    Arya Haj-Mirzaian
    Ali Guermazi
    Nima Hafezi-Nejad
    Christopher Sereni
    Michael Hakky
    David J. Hunter
    Bashir Zikria
    Frank W. Roemer
    Shadpour Demehri
    European Radiology, 2018, 28 : 4134 - 4145
  • [27] ARE SHORT-TERM RATES OF MRI-BASED MEASURES OF KNEE CARTILAGE LOSS MARKERS OF LONG-TERM CHANGE? FOUR-YEAR DATA FROM THE OA INITIATIVE
    Wirth, W.
    McCulloch, C. E.
    Lynch, J.
    Nevitt, M.
    Kwoh, C. K.
    Maschek, S.
    Hudelmaier, M.
    Sharma, L.
    Eckstein, F.
    OSTEOARTHRITIS AND CARTILAGE, 2011, 19 : S167 - S168
  • [28] Superolateral Hoffa's fat pad (SHFP) oedema and patellar cartilage volume loss: quantitative analysis using longitudinal data from the Foundation for the National Institute of Health (FNIH) Osteoarthritis Biomarkers Consortium
    Haj-Mirzaian, Arya
    Guermazi, Ali
    Hafezi-Nejad, Nima
    Sereni, Christopher
    Hakky, Michael
    Hunter, David J.
    Zikria, Bashir
    Roemer, Frank W.
    Demehri, Shadpour
    EUROPEAN RADIOLOGY, 2018, 28 (10) : 4134 - 4145
  • [29] SUPEROLATERAL HOFFA'S FAT PAD (SHFP) EDEMA AND PATELLAR CARTILAGE VOLUME LOSS: QUANTITATIVE ANALYSIS USING LONGITUDINAL DATA FROM THE FOUNDATION FOR THE NATIONAL INSTITUTE OF HEALTH (FNIH) OSTEOARTHRITIS BIOMARKERS CONSORTIUM
    Haj-Mirzaian, A.
    Guermazi, A.
    Hafezi-Nejad, N.
    Sereni, C.
    Hakky, M.
    Hunter, D.
    Zikria, B.
    Roemer, F.
    Demehri, S.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S447 - S447
  • [30] A machine learning approach to distinguish between knees without and with osteoarthritis using MRI-based radiomic features from tibial bone
    Hirvasniemi, Jukka
    Klein, Stefan
    Bierma-Zeinstra, Sita
    Vernooij, Meike W.
    Schiphof, Dieuwke
    Oei, Edwin H. G.
    EUROPEAN RADIOLOGY, 2021, 31 (11) : 8513 - 8521