ASSOCIATIONS AMONG A SPECTRUM OF KNEE OSTEOARTHRITIS FEATURES ON MRI INFORM ABOUT POTENTIAL PATHOGENIC MECHANISMS, DATA FROM THE OAI/FNIH BIOMARKERS CONSORTIUM

被引:0
|
作者
van Spil, W. E. [1 ]
Deveza, L. A. [2 ,3 ]
Hunter, D. J. [2 ,3 ]
机构
[1] Univ Med Ctr Utrecht, Utrecht, Netherlands
[2] Univ Sydney, Royal North Shore Hosp, Sydney, NSW, Australia
[3] Univ Sydney, Inst Bone & Joint Res, Kolling Inst, Sydney, NSW, Australia
关键词
D O I
10.1016/j.joca.2018.02.875
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
835
引用
收藏
页码:S463 / S463
页数:1
相关论文
共 22 条
  • [1] Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium
    Kraus, Virginia Byers
    Collins, Jamie E.
    Hargrove, David
    Losina, Elena
    Nevitt, Michael
    Katz, Jeffrey N.
    Wang, Susanne X.
    Sandell, Linda J.
    Hoffmann, Steven C.
    Hunter, David J.
    ANNALS OF THE RHEUMATIC DISEASES, 2017, 76 (01) : 186 - 195
  • [2] MRI BIOMARKERS OF KNEE OSTEOARTHRITIS PROGRESSION: RESULTS FROM THE FNIH BIOMARKERS CONSORTIUM PROGRESS OA STUDY
    Collins, Jamie E.
    Mesenbrink, Peter
    Jin, Rui
    Dam, Erik
    Deveza, Leticia A.
    Eckstein, Felix
    Fuerst, Thomas
    Guermazi, Ali
    Ladel, Christoph
    Losina, Elena
    Perry, Thomas A.
    Robinson, Douglas
    Swearingen, Christopher
    Wirth, Wolfgang
    Kraus, Virginia B.
    Hunter, David
    OSTEOARTHRITIS AND CARTILAGE, 2024, 32 : S110 - S111
  • [3] A machine learning approach to knee osteoarthritis phenotyping: data from the FNIH Biomarkers Consortium
    Nelson, A. E.
    Fang, F.
    Arbeeva, L.
    Cleveland, R. J.
    Schwartz, T. A.
    Callahan, L. F.
    Marron, J. S.
    Loeser, R. F.
    OSTEOARTHRITIS AND CARTILAGE, 2019, 27 (07) : 994 - 1001
  • [4] PREDICTION OF SYMPTOMS PROGRESSION FOR THE PATIENTS WITH KNEE OSTEOARTHRITIS BASED ON THE QUANTITATIVE STRUCTURAL FEATURES: DATA FROM THE FNIH OA BIOMARKERS CONSORTIUM
    Xiao, Yi
    Xiao, Feng
    Xu, Haibo
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2021, 21 (05)
  • [5] Change in Semi-Quantitative Imaging Biomarkers Predicts Knee Osteoarthritis Progression: Data from the Fnih OA Biomarkers Consortium
    Collins, Jamie E.
    Losina, Elena
    Nevitt, Michael C.
    Roemer, Frank W.
    Guermazi, Ali
    Lynch, John A.
    Katz, Jeffrey N.
    Kwoh, C. Kent
    Jordan, Joanne M.
    Kraus, Virginia
    Hunter, David
    ARTHRITIS & RHEUMATOLOGY, 2015, 67
  • [6] Predictive models of radiographic progression and pain progression in patients with knee osteoarthritis: data from the FNIH OA biomarkers consortium project
    Li, Xiaoyu
    Li, Chunpu
    Zhang, Peng
    ARTHRITIS RESEARCH & THERAPY, 2024, 26 (01)
  • [7] Development and evaluation of nomograms for predicting osteoarthritis progression based on MRI cartilage parameters: data from the FNIH OA biomarkers Consortium
    Chunbo Deng
    Yingwei Sun
    Zhan Zhang
    Xun Ma
    Xueyong Liu
    Fenghua Zhou
    BMC Medical Imaging, 23
  • [8] Development and evaluation of nomograms for predicting osteoarthritis progression based on MRI cartilage parameters: data from the FNIH OA biomarkers Consortium
    Deng, Chunbo
    Sun, Yingwei
    Zhang, Zhan
    Ma, Xun
    Liu, Xueyong
    Zhou, Fenghua
    BMC MEDICAL IMAGING, 2023, 23 (01)
  • [9] PREDICTIVE CAPACITY OF THIGH MUSCLE STRENGTH IN SYMPTOMATIC AND/OR RADIOGRAPHIC KNEE OSTEOARTHRITIS PROGRESSION-DATA FROM THE FNIH OA BIOMARKERS CONSORTIUM
    Culvenor, A.
    Wirth, W.
    Roth, M.
    Hunter, D.
    Eckstein, F.
    OSTEOARTHRITIS AND CARTILAGE, 2016, 24 : S417 - S418
  • [10] Synovitis mediates the association between bone marrow lesions and knee pain in osteoarthritis: data from the Foundation for the National Institute of Health (FNIH) Osteoarthritis Biomarkers Consortium
    Wang, X.
    Chen, T.
    Liang, W.
    Fan, T.
    Zhu, Z.
    Cao, P.
    Ruan, G.
    Zhang, Y.
    Chen, S.
    Wang, Q.
    Li, S.
    Huang, Y.
    Zeng, M.
    Hunter, D. J.
    Li, J.
    Ding, C.
    OSTEOARTHRITIS AND CARTILAGE, 2022, 30 (09) : 1270 - 1277