Supervised, semisupervised, and unsupervised learning of the Domany-Kinzel model

被引:0
|
作者
Tuo, Kui [1 ,2 ]
Li, Wei [1 ,2 ]
Deng, Shengfeng [3 ]
Zhu, Yueying [4 ]
机构
[1] Cent China Normal Univ, Key Lab Quark & Lepton Phys, MOE, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China
[3] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710061, Peoples R China
[4] Wuhan Text Univ, Res Ctr Appl Math & Interdisciplinary Sci, Wuhan 430073, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-TRANSITIONS; NEURAL-NETWORKS; PERCOLATION;
D O I
10.1103/PhysRevE.110.024102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Domany-Kinzel (DK) model encompasses several types of nonequilibrium phase transitions, depending on the selected parameters. We apply supervised, semisupervised, and unsupervised learning methods to studying the phase transitions and critical behaviors of the (1 + 1)-dimensional DK model. The supervised and the semisupervised learning methods permit the estimations of the critical points, the spatial and temporal correlation exponents, concerning labeled and unlabeled DK configurations, respectively. Furthermore, we also predict the critical points by employing principal component analysis and autoencoder. The PCA and autoencoder can produce results in good agreement with simulated stationary particle number density.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] DOMANY-KINZEL MODEL OF DIRECTED PERCOLATION - FORMULATION AS A RANDOM-WALK PROBLEM AND SOME EXACT RESULTS
    WU, FY
    STANLEY, HE
    PHYSICAL REVIEW LETTERS, 1982, 48 (12) : 775 - 778
  • [32] THE DOMANY-KINZEL CELLULAR-AUTOMATON - RELAXATION-TIME, SUSCEPTIBILITY AND CONSTRAINED DYNAMICS
    MARTINS, ML
    ZEBENDE, GF
    PENNA, TJP
    TSALLIS, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (01): : 1 - 8
  • [33] Spontaneous-search method and short-time dynamics: applications to the Domany-Kinzel cellular automaton
    S. D. da Cunha
    U. L. Fulco
    L. R. da Silva
    F. D. Nobre
    The European Physical Journal B, 2008, 63 : 93 - 100
  • [34] Transfer-matrix density-matrix renormalization group for stochastic models: the Domany-Kinzel cellular automaton
    Kemper, A
    Schadschneider, A
    Zittartz, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (19): : L279 - L287
  • [35] Spontaneous-search method and short-time dynamics: applications to the Domany-Kinzel cellular automaton
    da Cunha, S. D.
    Fulco, U. L.
    da Silva, L. R.
    Nobre, F. D.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 63 (01): : 93 - 100
  • [36] Extension of the Arrowsmith–Essam Formula to the Domany–Kinzel Model
    Norio Konno
    Makoto Katori
    Journal of Statistical Physics, 2000, 101 : 747 - 774
  • [37] Flexible Affinity Matrix Learning for Unsupervised and Semisupervised Classification
    Fang, Xiaozhao
    Han, Na
    Wong, Wai Keung
    Teng, Shaohua
    Wu, Jigang
    Xie, Shengli
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (04) : 1133 - 1149
  • [38] ON THE COMBINATION OF SUPERVISED AND UNSUPERVISED LEARNING
    INTRATOR, N
    PHYSICA A, 1993, 200 (1-4): : 655 - 661
  • [39] A Neural Field Model for Supervised and Unsupervised Learning of the MNIST Dataset
    Brady, Michael Connolly
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [40] A NEURAL NETWORK MODEL WHICH COMBINES UNSUPERVISED AND SUPERVISED LEARNING
    HSIEH, KR
    CHEN, WT
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (02): : 357 - 360