Supervised, semisupervised, and unsupervised learning of the Domany-Kinzel model

被引:0
|
作者
Tuo, Kui [1 ,2 ]
Li, Wei [1 ,2 ]
Deng, Shengfeng [3 ]
Zhu, Yueying [4 ]
机构
[1] Cent China Normal Univ, Key Lab Quark & Lepton Phys, MOE, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China
[3] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710061, Peoples R China
[4] Wuhan Text Univ, Res Ctr Appl Math & Interdisciplinary Sci, Wuhan 430073, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE-TRANSITIONS; NEURAL-NETWORKS; PERCOLATION;
D O I
10.1103/PhysRevE.110.024102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Domany-Kinzel (DK) model encompasses several types of nonequilibrium phase transitions, depending on the selected parameters. We apply supervised, semisupervised, and unsupervised learning methods to studying the phase transitions and critical behaviors of the (1 + 1)-dimensional DK model. The supervised and the semisupervised learning methods permit the estimations of the critical points, the spatial and temporal correlation exponents, concerning labeled and unlabeled DK configurations, respectively. Furthermore, we also predict the critical points by employing principal component analysis and autoencoder. The PCA and autoencoder can produce results in good agreement with simulated stationary particle number density.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] REENTRANT BEHAVIOR IN THE DOMANY-KINZEL CELLULAR-AUTOMATON
    RIEGER, H
    SCHADSCHNEIDER, A
    SCHRECKENBERG, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (12): : L423 - L429
  • [22] Subcritical behavior in the alternating supercritical Domany-Kinzel dynamics
    N. Masuda
    N. Konno
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 40 : 313 - 319
  • [23] Subcritical behavior in the alternating supercritical Domany-Kinzel dynamics
    Masuda, N
    Konno, N
    EUROPEAN PHYSICAL JOURNAL B, 2004, 40 (03): : 313 - 319
  • [24] Series expansions for the percolation probability of a generalized Domany-Kinzel cellular automaton
    Jensen, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8471 - 8478
  • [25] Quasistationary distributions for the Domany-Kinzel stochastic cellular automaton
    Atman, APF
    Dickman, R
    PHYSICAL REVIEW E, 2002, 66 (04): : 9 - 046135
  • [26] Scaling exponents of rough surfaces generated by the Domany-Kinzel cellular automaton
    Atman, APF
    Dickman, R
    Moreira, JG
    PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 016113
  • [27] Dualities for the Domany–Kinzel Model
    Makoto Katori
    Norio Konno
    Aidan Sudbury
    Hideki Tanemura
    Journal of Theoretical Probability, 2004, 17 : 131 - 144
  • [28] Dynamic transitions in Domany-Kinzel cellular automata on small-world network
    Mahajan, A. V.
    Saif, M. Ali
    Gade, P. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (3-4): : 895 - 903
  • [29] Dynamic transitions in Domany-Kinzel cellular automata on small-world network
    A. V. Mahajan
    M. Ali Saif
    P. M. Gade
    The European Physical Journal Special Topics, 2013, 222 : 895 - 903
  • [30] SPREADING OF DAMAGE IN THE DOMANY-KINZEL CELLULAR-AUTOMATON - A MEAN-FIELD APPROACH
    TOME, T
    PHYSICA A, 1994, 212 (1-2): : 99 - 109