Functionalized porous conductive carbon layer improves the low-temperature performance of LiFePO4 cathode material for lithium-ion batteries

被引:5
|
作者
Liu, Jian [1 ]
Liang, Kang [1 ]
He, Junfeng [1 ]
Li, Jianbin [1 ]
Huang, Xiaobing [2 ]
Zhang, Xiangyanng [2 ]
Ren, Yurong [1 ]
机构
[1] Changzhou Univ, Jiangsu Prov Engn Res Ctr Intelligent Mfg Technol, Sch Mat Sci & Engn, Changzhou High Technol Key Lab Intelligent Mfg Pow, Changzhou 213164, Peoples R China
[2] Hunan Univ Arts & Sci, Coll Chem & Mat Engn, Changde 415000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Low temperature; Co-doped; Porous structure; LiFePO4; ELECTROCHEMICAL PERFORMANCE; SOLVOTHERMAL SYNTHESIS; GRAPHITE; GRAPHENE; POWER; KINETICS; NITROGEN; STORAGE;
D O I
10.1016/j.carbon.2024.119483
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium iron phosphate (LiFePO4) has been successfully utilized due to its stable structure, low cost, and higher safety. Nevertheless, the sluggish diffusion kinetics and low electrical conductivity have suppressed the rate capacity and long-term cyclability at lower temperature, causing significant capacity degradation problems. Herein, to address such issues, a well-designed 3D porous structure LFP@NS is synthesized via the sol-gel method combined with a high-temperature calcination route. Furthermore, the nitrogen and sulfur in thiourea can be induced to enter the carbon matrix, resulting in generating more defects and active sites. Simultaneously, N,S codoped carbon matrix can form successive migration channels for lithium-ion, which can promote the diffusion kinetics and electrical conductivity. The as-prepared LFP@NS-2 sample provides 158.5 mAh g- 1 discharge capacity in the room temperature (RT) and 101.3 mAh g- 1 (in -20 degrees C) at 1C, and exhibits remarkable cyclic performance (122.3 mAh g- 1 after 2000 circles at 10C in the RT). Furthermore, to investigate the practical application in low temperature, coupled with a graphite (Gr) anode, the LFP@NS-2||Gr full battery releases 100.1mAh g- 1 at 1C in -20 degrees C. Therefore, this work has a far-reaching implication for designing the highperformance LIBs electrode materials for practical application at low temperature.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Double Carbon Nano Coating of LiFePO4 Cathode Material for High Performance of Lithium Ion Batteries
    Ding, Yan-Hong
    Huang, Guo-Long
    Li, Huan-Huan
    Xie, Hai-Ming
    Sun, Hai-Zhu
    Zhang, Jing-Ping
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (12) : 9630 - 9635
  • [42] Determination of Optimum Carbon Content of LiFePO4 Cathode Material for Lithium Ion Batteries
    Goektepe, Hueseyin
    Sahan, Halil
    Patat, Saban
    ASIAN JOURNAL OF CHEMISTRY, 2009, 21 (04) : 3186 - 3192
  • [43] Enhanced low-temperature performance of slight Mn-substituted LiFePO4/C cathode for lithium ion batteries
    Zeng LingJie
    Gong Qiang
    Liao XiaoZhen
    He Li
    He YuShi
    Ma ZiFeng
    CHINESE SCIENCE BULLETIN, 2011, 56 (12): : 1262 - 1266
  • [45] Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries
    Lin, Yingbin
    Lin, Ying
    Zhou, Ting
    Zhao, Guiying
    Huang, Yandan
    Yang, Yanmin
    Huang, Zhigao
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 138 (01) : 313 - 318
  • [46] Nitrogen-doped carbon layer of LiFePO4 improves the electrochemical performance for lithium ion batteries
    Chen, Qiulin
    Liu, Hailang
    Hu, Junxian
    Wang, Li
    Li, Yin
    Yao, Yaochun
    IONICS, 2023, 29 (11) : 4537 - 4545
  • [47] Nitrogen-doped carbon layer of LiFePO4 improves the electrochemical performance for lithium ion batteries
    Qiulin Chen
    Hailang Liu
    Junxian Hu
    Li Wang
    Yin Li
    Yaochun Yao
    Ionics, 2023, 29 : 4537 - 4545
  • [48] C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries
    Qin, Guohui
    Wu, Quanping
    Zhao, Jun
    Ma, Qianqian
    Wang, Chengyang
    JOURNAL OF POWER SOURCES, 2014, 248 : 588 - 595
  • [49] Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries
    Ren, Yu
    Bruce, Peter G.
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 17 : 60 - 62
  • [50] Mossbauer study on LiFePO4 cathode material for lithium ion batteries
    Hannoyer, B.
    Prince, A. A. M.
    Jean, M.
    Liu, R. S.
    Wang, G. X.
    HYPERFINE INTERACTIONS, 2006, 167 (1-3): : 767 - 772