Functionalized porous conductive carbon layer improves the low-temperature performance of LiFePO4 cathode material for lithium-ion batteries

被引:5
|
作者
Liu, Jian [1 ]
Liang, Kang [1 ]
He, Junfeng [1 ]
Li, Jianbin [1 ]
Huang, Xiaobing [2 ]
Zhang, Xiangyanng [2 ]
Ren, Yurong [1 ]
机构
[1] Changzhou Univ, Jiangsu Prov Engn Res Ctr Intelligent Mfg Technol, Sch Mat Sci & Engn, Changzhou High Technol Key Lab Intelligent Mfg Pow, Changzhou 213164, Peoples R China
[2] Hunan Univ Arts & Sci, Coll Chem & Mat Engn, Changde 415000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Low temperature; Co-doped; Porous structure; LiFePO4; ELECTROCHEMICAL PERFORMANCE; SOLVOTHERMAL SYNTHESIS; GRAPHITE; GRAPHENE; POWER; KINETICS; NITROGEN; STORAGE;
D O I
10.1016/j.carbon.2024.119483
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium iron phosphate (LiFePO4) has been successfully utilized due to its stable structure, low cost, and higher safety. Nevertheless, the sluggish diffusion kinetics and low electrical conductivity have suppressed the rate capacity and long-term cyclability at lower temperature, causing significant capacity degradation problems. Herein, to address such issues, a well-designed 3D porous structure LFP@NS is synthesized via the sol-gel method combined with a high-temperature calcination route. Furthermore, the nitrogen and sulfur in thiourea can be induced to enter the carbon matrix, resulting in generating more defects and active sites. Simultaneously, N,S codoped carbon matrix can form successive migration channels for lithium-ion, which can promote the diffusion kinetics and electrical conductivity. The as-prepared LFP@NS-2 sample provides 158.5 mAh g- 1 discharge capacity in the room temperature (RT) and 101.3 mAh g- 1 (in -20 degrees C) at 1C, and exhibits remarkable cyclic performance (122.3 mAh g- 1 after 2000 circles at 10C in the RT). Furthermore, to investigate the practical application in low temperature, coupled with a graphite (Gr) anode, the LFP@NS-2||Gr full battery releases 100.1mAh g- 1 at 1C in -20 degrees C. Therefore, this work has a far-reaching implication for designing the highperformance LIBs electrode materials for practical application at low temperature.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Electrochemical performance of surfactant-processed LiFePO4 as a cathode material for lithium-ion rechargeable batteries
    Lee, Jungbae
    Kumar, Purushottam
    Lee, Gwangwon
    Moudgil, Brij M.
    Singh, Rajiv K.
    IONICS, 2013, 19 (02) : 371 - 378
  • [32] Facile synthesis of nanostructured LiFePO4/C cathode material for lithium-ion batteries
    YANG ZhanXu1
    2 State Key Laboratory of Chemical Resource Engineering
    Science Bulletin, 2012, (32) : 4160 - 4163
  • [33] Facile synthesis of nanostructured LiFePO4/C cathode material for lithium-ion batteries
    Yang ZhanXu
    Qiao QingDong
    Kang XiaoXue
    Yang WenSheng
    CHINESE SCIENCE BULLETIN, 2012, 57 (32): : 4160 - 4163
  • [34] Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material
    Li, Zhihua
    Zhang, Duanming
    Yang, Fengxia
    JOURNAL OF MATERIALS SCIENCE, 2009, 44 (10) : 2435 - 2443
  • [35] Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material
    Zhihua Li
    Duanming Zhang
    Fengxia Yang
    Journal of Materials Science, 2009, 44 : 2435 - 2443
  • [36] Effects of samarium doping on the electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries
    Meng, Xudong
    Han, Bing
    Wang, Yanfeng
    Nan, Jingyu
    CERAMICS INTERNATIONAL, 2016, 42 (02) : 2599 - 2604
  • [37] Physical and electrochemical properties of doped LiFePO4 as cathode material for lithium-ion batteries
    Yao, YX
    Duan, ZZ
    Li, YN
    Gu, HW
    Hua, ZQ
    Luan, WZ
    Wang, Y
    JOURNAL OF RARE EARTHS, 2004, 22 : 123 - 125
  • [38] Mechanism for Hydrothermal Synthesis of LiFePO4 Platelets as Cathode Material for Lithium-Ion Batteries
    Qin, Xue
    Wang, Xiaohui
    Xiang, Huimin
    Xie, Jie
    Li, Jingjing
    Zhou, Yanchun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39): : 16806 - 16812
  • [39] Review on Defects and Modification Methods of LiFePO4 Cathode Material for Lithium-Ion Batteries
    Chen, Shi-Peng
    Lv, Dan
    Chen, Jie
    Zhang, Yu-Hang
    Shi, Fa-Nian
    ENERGY & FUELS, 2022, 36 (03) : 1232 - 1251
  • [40] Study on Electrochemical Performance of Carbon-coated LiFePO4 as Cathode Material for Lithium Ion Batteries
    Triwibowo, Joko
    Priyono, Slamet
    Purawiardi, Ibrahim
    Lestariningsih, Titik
    Ratri, Christin Rina
    ADVANCES OF SCIENCE AND TECHNOLOGY FOR SOCIETY, 2016, 1755