Vmin Shift Prediction Using Machine Learning-Based Methodology for Automotive Products

被引:0
|
作者
Yang, Y. L. [1 ]
Tsao, P. C. [1 ]
Lin, C. W. [1 ]
Chen, H. Q. [1 ]
Huang, B. J. [2 ]
Hsieh, Hank [3 ]
Chen, Kerwin [3 ]
Lee, Ross [4 ]
Koh, Khim [4 ]
Ting, Y. J. [4 ]
Hsu, B. C. [1 ]
Huang, Y. S. [1 ]
Lai, Citi [4 ]
Lee, M. Z. [1 ]
Lee, T. H. [1 ]
机构
[1] MediaTek Inc, Prod Engn, Hsinchu, Taiwan
[2] MediaTek Inc, High Performance Comp, Hsinchu, Taiwan
[3] MediaTek Inc, Qual & Reliabil, Hsinchu, Taiwan
[4] MediaTek Inc, AI & Data Engn, Hsinchu, Taiwan
关键词
Machine Learning; Vmin shift; aging monitor; datacenter; automotive;
D O I
10.1109/IRPS48228.2024.10529430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Predicting aging behavior is essential for product development to guarantee in-field lifetime. Conventionally, aging margin is determined by identifying the maximum shift value of minimum operating voltage (Vmin) through a series of high-temperature operation lifetime (HTOL) tests. In this paper, we propose a novel approach that leverages the machine learning (ML) techniques to predict Vmin shifts before conducting the HTOL test. Compared to the conventional fixed aging margin, this ML-based methodology offers the adaptive aging margins on voltage groups, resulting in significant power savings. The reduction in the aging margin is estimated to be > 20%. In addition, this proposed methodology enables the use of more sensitive monitors for detecting reliability degradation compared to the on-chip NAND and NOR based RO. In our experiment, the ML derived monitor demonstrated the 3x sensitivity to negative bias temperature instability ( NBTI) than NOR.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Machine learning-based epoxy resin property prediction
    Jang, Huiwon
    Ryu, Dayoung
    Lee, Wonseok
    Park, Geunyeong
    Kim, Jihan
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (09): : 959 - 968
  • [42] Machine learning-based weather prediction with radiosonde observations
    Gogen, Eralp
    Guney, Selda
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (04): : 2317 - 2328
  • [43] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [44] Machine learning-based prediction of compound profiling matrices
    Perez, Raquel Rodriguez
    Bajorath, Jurgen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [45] Machine Learning-Based Academic Result Prediction System
    Bhushan, Megha
    Verma, Utkarsh
    Garg, Chetna
    Negi, Arun
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2024, 12 (01)
  • [46] Machine Learning-Based Link Prediction for Hotel Network
    Sevim, Yiğit
    Orman, Günce Keziban
    Yöndem, Meltem Turhan
    IAENG International Journal of Computer Science, 2022, 49 (04)
  • [47] Machine Learning-based Pin Accessibility Prediction and Application
    Fang, Shao-Yun
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [48] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505
  • [49] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [50] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677