Vmin Shift Prediction Using Machine Learning-Based Methodology for Automotive Products

被引:0
|
作者
Yang, Y. L. [1 ]
Tsao, P. C. [1 ]
Lin, C. W. [1 ]
Chen, H. Q. [1 ]
Huang, B. J. [2 ]
Hsieh, Hank [3 ]
Chen, Kerwin [3 ]
Lee, Ross [4 ]
Koh, Khim [4 ]
Ting, Y. J. [4 ]
Hsu, B. C. [1 ]
Huang, Y. S. [1 ]
Lai, Citi [4 ]
Lee, M. Z. [1 ]
Lee, T. H. [1 ]
机构
[1] MediaTek Inc, Prod Engn, Hsinchu, Taiwan
[2] MediaTek Inc, High Performance Comp, Hsinchu, Taiwan
[3] MediaTek Inc, Qual & Reliabil, Hsinchu, Taiwan
[4] MediaTek Inc, AI & Data Engn, Hsinchu, Taiwan
关键词
Machine Learning; Vmin shift; aging monitor; datacenter; automotive;
D O I
10.1109/IRPS48228.2024.10529430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Predicting aging behavior is essential for product development to guarantee in-field lifetime. Conventionally, aging margin is determined by identifying the maximum shift value of minimum operating voltage (Vmin) through a series of high-temperature operation lifetime (HTOL) tests. In this paper, we propose a novel approach that leverages the machine learning (ML) techniques to predict Vmin shifts before conducting the HTOL test. Compared to the conventional fixed aging margin, this ML-based methodology offers the adaptive aging margins on voltage groups, resulting in significant power savings. The reduction in the aging margin is estimated to be > 20%. In addition, this proposed methodology enables the use of more sensitive monitors for detecting reliability degradation compared to the on-chip NAND and NOR based RO. In our experiment, the ML derived monitor demonstrated the 3x sensitivity to negative bias temperature instability ( NBTI) than NOR.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Machine Learning-based Fundamental Stock Prediction Using Companies' Financial Reports
    Abdi, Kamran
    Rezaei, Hossein
    Hooshmand, Mohsen
    2024 32ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEE 2024, 2024, : 581 - 585
  • [32] Machine Learning-Based Cellular Traffic Prediction Using Data Reduction Techniques
    Nashaat, Heba
    Mohammed, Nihal H.
    Abdel-Mageid, Salah M.
    Rizk, Rawya Y.
    IEEE ACCESS, 2024, 12 : 58927 - 58939
  • [33] Machine learning-based prediction of cancer immunotherapy response using circulating cytokines
    Wei, Feifei
    Azuma, Koichi
    Nakahara, Yoshiro
    Saito, Haruhiro
    Kouro, Taku
    Himuro, Hidetomo
    Horaguchi, Shun
    Tsuji, Kayoko
    Sasada, Tetsuro
    CANCER SCIENCE, 2023, 114 : 1013 - 1013
  • [34] Prediction of gestational diabetes in the first trimester using machine learning-based methods
    Lee, Seung Mi
    Hwangbo, Suhyun
    Norwitz, Errol R.
    Koo, Ja Nam
    Oh, Ig Hwan
    Choi, Eun Saem
    Jung, Young Mi
    Kim, Sun Min
    Kim, Byoung Jae
    Kim, Sang Youn
    Kim, Gyoung Min
    Kim, Won
    Joo, Sae Kyung
    Shin, Sue
    Park, Chan-Wook
    Park, Taesung
    Park, Joong Shin
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2021, 224 (02) : S252 - S253
  • [35] Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications
    Bhat, Gautam S.
    Shankar, Nikhil
    Kim, Dohyeong
    Song, Dae Jin
    Seo, Sungchul
    Panahi, Issa M. S.
    Tamil, Lakshman
    IEEE ACCESS, 2021, 9 : 118708 - 118715
  • [36] Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data
    Schipper, Anoeska
    Rutten, Matthieu
    van Gammeren, Adriaan
    Harteveld, Cornelis L.
    Urrechaga, Eloisa
    Weerkamp, Floor
    den Besten, Gijs
    Krabbe, Johannes
    Slomp, Jennichjen
    Schoonen, Lise
    Broeren, Maarten
    van Wijnen, Merel
    Huijskens, Mirelle J. A. J.
    Koopmann, Tamara
    van Ginneken, Bram
    Kusters, Ron
    Kurstjens, Steef
    CLINICAL CHEMISTRY, 2024, 70 (08) : 1064 - 1075
  • [37] Machine learning-based prediction of diabetic patients using blood routine data
    Li, Honghao
    Su, Dongqing
    Zhang, Xinpeng
    He, Yuanyuan
    Luo, Xu
    Xiong, Yuqiang
    Zou, Min
    Wei, Huiyan
    Wen, Shaoran
    Xi, Qilemuge
    Zuo, Yongchun
    Yang, Lei
    METHODS, 2024, 229 : 156 - 162
  • [38] Machine learning-based colorectal cancer prediction using global dietary data
    Abdul Rahman, Hanif
    Ottom, Mohammad Ashraf
    Dinov, Ivo D.
    BMC CANCER, 2023, 23 (01)
  • [39] Using emergency department triage for machine learning-based admission and mortality prediction
    Tschoellitsch, Thomas
    Seidl, Philipp
    Bock, Carl
    Maletzky, Alexander
    Moser, Philipp
    Thumfart, Stefan
    Giretzlehner, Michael
    Hochreiter, Sepp
    Meier, Jens
    EUROPEAN JOURNAL OF EMERGENCY MEDICINE, 2023, 30 (06) : 408 - 416
  • [40] Machine learning-based colorectal cancer prediction using global dietary data
    Hanif Abdul Rahman
    Mohammad Ashraf Ottom
    Ivo D. Dinov
    BMC Cancer, 23