Over-the-Air Federated Learning with Phase Noise: Analysis and Countermeasures

被引:0
|
作者
Dahl, Martin [1 ]
Larsson, Erik G. [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn ISY, Linkoping, Sweden
基金
瑞典研究理事会;
关键词
Federated learning; Wireless networks; COMPUTATION;
D O I
10.1109/CISS59072.2024.10480215
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wirelessly connected devices can collaborately train a machine learning model using federated learning, where the aggregation of model updates occurs using over-the-air computation. Carrier frequency offset caused by imprecise clocks in devices will cause the phase of the over-the-air channel to drift randomly, such that late symbols in a coherence block are transmitted with lower quality than early symbols. To mitigate the effect of degrading symbol quality, we propose a scheme where one of the permutations Roll, Flip and Sort are applied on gradients before transmission. Through simulations we show that the permutations can both improve and degrade learning performance. Furthermore, we derive the expectation and variance of the gradient estimate, which is shown to grow exponentially with the number of symbols in a coherence block.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Boosting Fairness and Robustness in Over-the-Air Federated Learning
    Oeksuez, Halil Yigit
    Molinari, Fabio
    Sprekeler, Henning
    Raisch, Joerg
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 682 - 687
  • [32] Over-the-Air Federated Learning with Energy Harvesting Devices
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1942 - 1947
  • [33] Convergence Analysis and Optimization of SWIPT-Based Over-the-Air Federated Learning
    Fan, Shaoshuai
    Tao, Shilin
    Ni, Wanli
    Tian, Hui
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (06) : 1352 - 1356
  • [34] Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation
    Xu, Chunmei
    Liu, Shengheng
    Yang, Zhaohui
    Huang, Yongming
    Wong, Kai-Kit
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3742 - 3756
  • [35] Joint Beamforming and Learning Rate Optimization for Over-the-Air Federated Learning
    Kim, Minsik
    Park, Daeyoung
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (10) : 13706 - 13711
  • [36] Over-the-Air Computation Assisted Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Luo, Xiliang
    Zhou, Yong
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5940 - 5945
  • [37] PolarAir: A Compressed Sensing Scheme for Over-the-Air Federated Learning
    Gkagkos, Michail
    Narayanan, Krishna R.
    Chamberland, Jean-Francois
    Georghiades, Costas N.
    2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 136 - 141
  • [38] User Scheduling for Federated Learning Through Over-the-Air Computation
    Ma, Xiang
    Sun, Haijian
    Wang, Qun
    Hu, Rose Qingyang
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [39] Device Scheduling for Over-the-Air Federated Learning with Differential Privacy
    Yan, Na
    Wang, Kezhi
    Pan, Cunhua
    Chai, Kok Keong
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 51 - 56
  • [40] Empowering over-the-air personalized federated learning via RIS
    Wei SHI
    Jiacheng YAO
    Jindan XU
    Wei XU
    Lexi XU
    Chunming ZHAO
    Science China(Information Sciences), 2024, 67 (11) : 371 - 372