External validation of risk prediction model for gestational diabetes: Individual participant data meta-analysis of randomized trials

被引:0
|
作者
Ranasinha, Sanjeeva [1 ]
Enticott, Joanne [1 ]
Harrison, Cheryce L. [1 ,2 ]
Thangaratinam, Shakila [4 ,5 ,6 ]
Wang, Rui [1 ,3 ]
Teede, Helena J. [1 ,2 ]
机构
[1] Monash Univ, Monash Ctr Hlth Res & Implementat, Melbourne, Vic, Australia
[2] Monash Hlth, Endocrine & Diabet Unit, Melbourne, Australia
[3] Monash Univ, Monash Hlth, Sch Clin Sci, Dept Obstet & Gynaecol, Melbourne, Vic, Australia
[4] Univ Birmingham, Inst Metab & Syst Res, WHO Collaborating Ctr Global Womens Hlth, Birmingham, England
[5] Birmingham Womens & Childrens NHS Fdn Trust, Birmingham, England
[6] Univ Hosp Birmingham, NIHR Biomed Res Ctr, Birmingham, England
基金
英国医学研究理事会;
关键词
Gestational diabetes; External validation; Risk factors; Discrimination; Calibration; MISSING DATA; HYPERGLYCEMIA; PREVENTION; PREVALENCE; MELLITUS; WOMEN;
D O I
10.1016/j.ijmedinf.2024.105533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: An original validated risk prediction model with good discriminatory prognostic performance for predicting gestational diabetes (GDM) diagnosis, has been updated for recent international association of diabetes in pregnancy study group (IADPSG) diagnostic criteria. However, the updated model is yet to be externally validated on an international dataset. Aims: To perform an external validation of the updated risk prediction model to evaluate model indices such as discrimination and calibration based on data from the International Weight Management in Pregnancy (i-WIP) Collaborative Group. Materials and Methods: The i-WIP dataset was used to validate the GDM prediction tool across discrimination and model calibration. Results: Overall 7689 individual patient data were included, with 17.4 % with GDM, however only 113 cases were available using IADPSG (International Association of Diabetes and Pregnancy Groups) criteria for 75 g OGTT glucose load and ACOG (American College of Obstetricians and Gynecologists) for 100 g glucose load and having the routine clinical risk factor data. The GDM model was moderately discriminatory (Area Under the Curve (AUC) of 0.67; 95% CI 0.59 to 0.75), Sensitivity 81.0% (95% CI 66.7 % to 90.9 %), specificity 53 % (40.3 % to 65.4 %). The GDM score showed reasonable calibration for predicting GDM (slope = 0.84, CITL = 0.77). Imputation for missing data increased the sample to n = 253, and vastly improved the discrimination and calibration of the model to AUC = 78 (95 % CI 72 to 85), sensitivity (81 %, 95 % CI 66.7 % to 90.9 %) and specificity (75 %, 95 % CI 68.8 % to 81 %). Conclusion: The updated GDM model showed promising discrimination in predicting GDM in an international population sourced from RCT individual patient data. External validations are essential in order for the risk prediction area to advance, and we demonstrate the utility of using existing RCT data from different global settings. Despite limitations associated with harmonising the data to the variable types in the model, the validation model indices were reasonable, supporting generalizability across continents and populations.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] The efficacy of magnesium supplementation for gestational diabetes: A meta-analysis of randomized controlled trials
    Luo, Liwei
    Zhang, Yu
    Wang, Hongman
    Chen, Danyan
    Li, Li
    EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2024, 293 : 84 - 90
  • [42] Probiotic Supplement for the Prevention of Gestational Diabetes: A Meta-Analysis of Randomized Controlled Trials
    Chen, Xuexia
    Pan, Linlin
    Zhang, Zengliang
    Niu, Renxiu
    Zhang, Huixin
    Ma, Teng
    ZEITSCHRIFT FUR GEBURTSHILFE UND NEONATOLOGIE, 2023, 227 (01): : 24 - 30
  • [44] Job Strain and the Risk of Stroke An Individual-Participant Data Meta-Analysis
    Fransson, Eleonor I.
    Nyberg, Solja T.
    Heikkila, Katriina
    Alfredsson, Lars
    Bjorner, Jakob B.
    Borritz, Marianne
    Burr, Hermann
    Dragano, Nico
    Geuskens, Goedele A.
    Goldberg, Marcel
    Hamer, Mark
    Hooftman, Wendela E.
    Houtman, Irene L.
    Joensuu, Matti
    Jokela, Markus
    Knutsson, Anders
    Koskenvuo, Markku
    Koskinen, Aki
    Kumari, Meena
    Leineweber, Constanze
    Lunau, Thorsten
    Madsen, Ida E. H.
    Hanson, Linda L. Magnusson
    Nielsen, Martin L.
    Nordin, Maria
    Oksanen, Tuula
    Pentti, Jaana
    Pejtersen, Jan H.
    Rugulies, Reiner
    Salo, Paula
    Shipley, Martin J.
    Steptoe, Andrew
    Suominen, Sakari B.
    Theorell, Toeres
    Toppinen-Tanner, Salla
    Vahtera, Jussi
    Virtanen, Marianna
    Vaananen, Ari
    Westerholm, Peter J. M.
    Westerlund, Hugo
    Zins, Marie
    Britton, Annie
    Brunner, Eric J.
    Singh-Manoux, Archana
    Batty, G. David
    Kivimaki, Mika
    STROKE, 2015, 46 (02) : 557 - 559
  • [45] External validation of prognostic models to predict stillbirth using International Prediction of Pregnancy Complications (IPPIC) Network database: individual participant data meta-analysis
    Allotey, J.
    Whittle, R.
    Snell, K. I. E.
    Smuk, M.
    Townsend, R.
    von Dadelszen, P.
    Heazell, A. E. P.
    Magee, L.
    Smith, G. C. S.
    Sandall, J.
    Thilaganathan, B.
    Zamora, J.
    Riley, R. D.
    Khalil, A.
    Thangaratinam, S.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2022, 59 (02) : 209 - 219
  • [46] Heterogeneity of European farmers' risk preferences: an individual participant data meta-analysis
    Garcia, Viviana
    McCallum, Chloe
    Finger, Robert
    EUROPEAN REVIEW OF AGRICULTURAL ECONOMICS, 2024, 51 (03) : 725 - 778
  • [47] Risk Factors for Thyroid Dysfunction in Pregnancy: An Individual Participant Data Meta-Analysis
    Osinga, Joris A. J.
    Liu, Yindi
    Maennistoe, Tuija
    Vafeiadi, Marina
    Tao, Fang-Biao
    Vaidya, Bijay
    Vrijkotte, Tanja G. M.
    Mosso, Lorena
    Bassols, Judit
    Lopez-Bermejo, Abel
    Boucai, Laura
    Aminorroaya, Ashraf
    Feldt-Rasmussen, Ulla
    Hisada, Aya
    Yoshinaga, Jun
    Broeren, Maarten A. C.
    Itoh, Sachiko
    Kishi, Reiko
    Ashoor, Ghalia
    Chen, Liangmiao
    Veltri, Flora
    Lu, Xuemian
    Taylor, Peter N.
    Brown, Suzanne J.
    Chatzi, Leda
    Popova, Polina V.
    Grineva, Elena N.
    Ghafoor, Farkhanda
    Pirzada, Amna
    Kianpour, Maryam
    Oken, Emily
    Suvanto, Eila
    Hattersley, Andrew
    Rebagliato, Marisa
    Riano-Galan, Isolina
    Irizar, Amaia
    Vrijheid, Martine
    Delgado-Saborit, Juana Maria
    Fernandez-Somoano, Ana
    Santa-Marina, Loreto
    Boelaert, Kristien
    Brenta, Gabriela
    Dhillon-Smith, Rima
    Dosiou, Chrysoula
    Eaton, Jennifer L.
    Guan, Haixia
    Lee, Sun Y.
    Maraka, Spyridoula
    Morris-Wiseman, Lilah F.
    Nguyen, Caroline T.
    THYROID, 2024, 34 (05) : 646 - 658
  • [48] An Individual Participant Data Meta-Analysis of 13 Randomized Trials to Evaluate the Impact of Prophylactic Use of Heparin in Oncological Patients
    Schunemann, Holger
    Ventresca, Matthew
    Crowther, Mark
    Di Nisio, Marcello
    Briel, Matthias
    Zhou, Qi
    Noble, Simon
    Macbeth, Fergus
    Griffiths, Gareth
    Garcia, David A.
    Lyman, Gary H.
    Iorio, Alfonso
    Mbuagbaw, Lawrence
    Neumann, Ignacio
    Van Es, Nick
    Brozek, Jan
    Guyatt, Gordon
    Streiff, Michael B.
    Brouwers, Melissa
    Baldeh, Tejan
    Marcucci, Maura
    Florez, Ivan
    Solh, Ziad
    Ageno, Walter
    Bleker, Suzanne
    Bozas, George
    Buller, Harry
    Klerk, Clara
    Lebeau, Bernard
    Lecumberri, Ramon
    McBane, Robert D.
    Sideras, Kostandinos
    Maraveyas, Anthony
    Pelzer, Uwe
    Loprinzi, Charles
    Bossuyt, Patrick
    Kahale, Lara
    Akl, Elie A.
    Zulian, Gilbert
    BLOOD, 2017, 130
  • [49] Protocol for a Systematic Review and Individual Participant Data Meta-Analysis of Randomized Trials of Screening for Atrial Fibrillation to Prevent Stroke
    McIntyre, William
    THROMBOSIS AND HAEMOSTASIS, 2023, 123 (03) : 366 - 376
  • [50] Melodic Intonation Therapy for aphasia: A multi-level meta-analysis of randomized controlled trials and individual participant data
    Popescu, Tudor
    Stahl, Benjamin
    Wiernik, Brenton M.
    Haiduk, Felix
    Zemanek, Michaela
    Helm, Hannah
    Matzinger, Theresa
    Beisteiner, Roland
    Fitch, W. Tecumseh
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2022, 1516 (01) : 76 - 84