External validation of risk prediction model for gestational diabetes: Individual participant data meta-analysis of randomized trials

被引:0
|
作者
Ranasinha, Sanjeeva [1 ]
Enticott, Joanne [1 ]
Harrison, Cheryce L. [1 ,2 ]
Thangaratinam, Shakila [4 ,5 ,6 ]
Wang, Rui [1 ,3 ]
Teede, Helena J. [1 ,2 ]
机构
[1] Monash Univ, Monash Ctr Hlth Res & Implementat, Melbourne, Vic, Australia
[2] Monash Hlth, Endocrine & Diabet Unit, Melbourne, Australia
[3] Monash Univ, Monash Hlth, Sch Clin Sci, Dept Obstet & Gynaecol, Melbourne, Vic, Australia
[4] Univ Birmingham, Inst Metab & Syst Res, WHO Collaborating Ctr Global Womens Hlth, Birmingham, England
[5] Birmingham Womens & Childrens NHS Fdn Trust, Birmingham, England
[6] Univ Hosp Birmingham, NIHR Biomed Res Ctr, Birmingham, England
基金
英国医学研究理事会;
关键词
Gestational diabetes; External validation; Risk factors; Discrimination; Calibration; MISSING DATA; HYPERGLYCEMIA; PREVENTION; PREVALENCE; MELLITUS; WOMEN;
D O I
10.1016/j.ijmedinf.2024.105533
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: An original validated risk prediction model with good discriminatory prognostic performance for predicting gestational diabetes (GDM) diagnosis, has been updated for recent international association of diabetes in pregnancy study group (IADPSG) diagnostic criteria. However, the updated model is yet to be externally validated on an international dataset. Aims: To perform an external validation of the updated risk prediction model to evaluate model indices such as discrimination and calibration based on data from the International Weight Management in Pregnancy (i-WIP) Collaborative Group. Materials and Methods: The i-WIP dataset was used to validate the GDM prediction tool across discrimination and model calibration. Results: Overall 7689 individual patient data were included, with 17.4 % with GDM, however only 113 cases were available using IADPSG (International Association of Diabetes and Pregnancy Groups) criteria for 75 g OGTT glucose load and ACOG (American College of Obstetricians and Gynecologists) for 100 g glucose load and having the routine clinical risk factor data. The GDM model was moderately discriminatory (Area Under the Curve (AUC) of 0.67; 95% CI 0.59 to 0.75), Sensitivity 81.0% (95% CI 66.7 % to 90.9 %), specificity 53 % (40.3 % to 65.4 %). The GDM score showed reasonable calibration for predicting GDM (slope = 0.84, CITL = 0.77). Imputation for missing data increased the sample to n = 253, and vastly improved the discrimination and calibration of the model to AUC = 78 (95 % CI 72 to 85), sensitivity (81 %, 95 % CI 66.7 % to 90.9 %) and specificity (75 %, 95 % CI 68.8 % to 81 %). Conclusion: The updated GDM model showed promising discrimination in predicting GDM in an international population sourced from RCT individual patient data. External validations are essential in order for the risk prediction area to advance, and we demonstrate the utility of using existing RCT data from different global settings. Despite limitations associated with harmonising the data to the variable types in the model, the validation model indices were reasonable, supporting generalizability across continents and populations.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Progestogens to prevent preterm birth in twin pregnancies: an individual participant data meta-analysis of randomized trials
    Ewoud Schuit
    Sarah Stock
    Rolf HH Groenwold
    Kimberly Maurel
    C Andrew Combs
    Thomas Garite
    Cathy Y Spong
    Elizabeth A Thom
    Dwight J Rouse
    Steve N Caritis
    George R Saade
    Julia M Zachary
    Jane E Norman
    Line Rode
    Katharina Klein
    Ann Tabor
    Elçin Çetingöz
    John C Morrison
    Everett F Magann
    Christian M Briery
    Vicente Serra
    Alfredo Perales
    Juan Meseguer
    Anwar H Nassar
    Arianne C Lim
    Karel GM Moons
    Anneke Kwee
    Ben Willem J Mol
    BMC Pregnancy and Childbirth, 12
  • [22] Development and validation of a prognostic model to predict birth weight: individual participant data meta-analysis
    Allotey, John
    Archer, Lucinda
    Snell, Kym I. E.
    Coomar, Dyuti
    Masse, Jacques
    Sletner, Line
    Wolf, Hans
    Daskalakis, George
    Saito, Shigeru
    Ganzevoort, Wessel
    Ohkuchi, Akihide
    Mistry, Hema
    Farrar, Diane
    Mone, Fionnuala
    Zhang, Jun
    Seed, Paul T.
    Teede, Helena
    Costa, Fabricio Da Silva
    Souka, Athena P.
    Smuk, Melanie
    Ferrazzani, Sergio
    Salvi, Silvia
    Prefumo, Federico
    Gabbay-Benziv, Rinat
    Nagata, Chie
    Takeda, Satoru
    Sequeira, Evan
    Lapaire, Olav
    Cecatti, Jose Guilherme
    Morris, Rachel Katherine
    Baschat, Ahmet A.
    Salvesen, Kjell
    Smits, Luc
    Anggraini, Dewi
    Rumbold, Alice
    van Gelder, Marleen
    Coomarasamy, Arri
    Kingdom, John
    Heinonen, Seppo
    Khalil, Asma
    Goffinet, Francois
    Haqnawaz, Sadia
    Zamora, Javier
    Riley, Richard D.
    Thangaratinam, Shakila
    BMJ MEDICINE, 2024, 3 (01): : 1 - 14
  • [23] Vitamin D and Risk for Type 2 Diabetes in People With Prediabetes A Systematic Review and Meta-analysis of Individual Participant Data From 3 Randomized Clinical Trials
    Pittas, Anastassios G.
    Kawahara, Tetsuya
    Jorde, Rolf
    Dawson-Hughes, Bess
    Vickery, Ellen M.
    Angellotti, Edith
    Nelson, Jason
    Trikalinos, Thomas A.
    Balk, Ethan M.
    ANNALS OF INTERNAL MEDICINE, 2023, 176 (03)
  • [24] Vitamin D Supplementation and Risk of Type 2 Diabetes in Patients with Prediabetes: A Meta-analysis of Individual Participant Data from Randomized, Placebo-Controlled Trials
    Pittas, Anastassios G.
    Kawahara, Tetsuya
    Jorde, Rolf
    Nelson, Jason P.
    Angellotti, Edith
    Vickery, Ellen
    Dawson-Hughes, Bess
    Trikalinos, Thomas
    Balk, Ethan M.
    DIABETES, 2021, 70
  • [25] Lifestyle intervention can reduce the risk of gestational diabetes: a meta-analysis of randomized controlled trials
    Song, C.
    Li, J.
    Leng, J.
    Ma, R. C.
    Yang, X.
    OBESITY REVIEWS, 2016, 17 (10) : 960 - 969
  • [26] Individual Participant Data Meta-Analysis Explained
    Kelley, George A.
    JOURNAL OF PEDIATRICS, 2019, 207 : 265 - 266
  • [27] Depression, anxiety, and the risk of cancer: An individual participant data meta-analysis
    van Tuijl, Lonneke A.
    Basten, Maartje
    Pan, Kuan-Yu
    Vermeulen, Roel
    Portengen, Luetzen
    de Graeff, Alexander
    Dekker, Joost
    Geerlings, Mirjam I.
    Hoogendoorn, Adriaan
    Lamers, Femke
    Voogd, Adri C.
    Abell, Jessica
    Awadalla, Philip
    Beekman, Aartjan T. F.
    Bjerkeset, Ottar
    Boyd, Andy
    Cui, Yunsong
    Frank, Philipp
    Galenkamp, Henrike
    Garssen, Bert
    Hellingman, Sean
    Huisman, Martijn
    Huss, Anke
    de Jong, Trynke R.
    Keats, Melanie R.
    Kok, Almar A. L.
    Krokstad, Steinar
    van Leeuwen, Flora E.
    Luik, Annemarie I.
    Noisel, Nolwenn
    Onland-Moret, N. Charlotte
    Payette, Yves
    Penninx, Brenda W. J. H.
    Rissanen, Ina
    Roest, Annelieke M.
    Ruiter, Rikje
    Schoevers, Robert A.
    Soave, David
    Spaan, Mandy
    Steptoe, Andrew
    Stronks, Karien
    Sund, Erik R.
    Sweeney, Ellen
    Twait, Emma L.
    Teyhan, Alison
    Verschuren, W. M. Monique
    van der Willik, Kimberly D.
    Rosmalen, Judith G. M.
    Ranchor, Adelita V.
    CANCER, 2023, 129 (20) : 3287 - 3299
  • [28] Duration of Breastfeeding and Risk of SIDS: An Individual Participant Data Meta-analysis
    Thompson, John M. D.
    Tanabe, Kawai
    Moon, Rachel Y.
    Mitchell, Edwin A.
    McGarvey, Cliona
    Tappin, David
    Blair, Peter S.
    Hauck, Fern R.
    PEDIATRICS, 2017, 140 (05)
  • [29] Antihypertensive treatment and risk of cancer: an individual participant data meta-analysis
    Copland, Emma
    Canoy, Dexter
    Nazarzadeh, Milad
    Bidel, Zeinab
    Ramakrishnan, Rema
    Woodward, Mark
    Chalmers, John
    Teo, Koon K.
    Pepine, Carl J.
    Davis, Barry R.
    Kjeldsen, Sverre
    Sundstrom, Johan
    Rahimi, Kazem
    LANCET ONCOLOGY, 2021, 22 (04): : 558 - 570
  • [30] An Introduction to Individual Participant Data Meta-analysis
    Veroniki, Areti Angeliki
    Seitidis, Georgios
    Tsivgoulis, Georgios
    Katsanos, Aristeidis H.
    Mavridis, Dimitris
    NEUROLOGY, 2023, 100 (23) : 1102 - 1110