Adaptive Learnable Spectral-Spatial Fusion Transformer for Hyperspectral Image Classification

被引:1
|
作者
Wang, Minhui [1 ,2 ]
Sun, Yaxiu [1 ,2 ]
Xiang, Jianhong [1 ,2 ]
Sun, Rui [1 ,2 ]
Zhong, Yu [3 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Key Lab Adv Ship Commun & Informat Technol, Harbin 150001, Peoples R China
[3] Agile & Intelligent Comp Key Lab Sichuan Prov, Chengdu 610000, Peoples R China
关键词
hyperspectral image (HSI); convolutional neural network (CNN); vision transformer; spectral-spatial features fusion; REMOTE-SENSING IMAGES; DISTANCE;
D O I
10.3390/rs16111912
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In hyperspectral image classification (HSIC), every pixel of the HSI is assigned to a land cover category. While convolutional neural network (CNN)-based methods for HSIC have significantly enhanced performance, they encounter challenges in learning the relevance of deep semantic features and grappling with escalating computational costs as network depth increases. In contrast, the transformer framework is adept at capturing the relevance of high-level semantic features, presenting an effective solution to address the limitations encountered by CNN-based approaches. This article introduces a novel adaptive learnable spectral-spatial fusion transformer (ALSST) to enhance HSI classification. The model incorporates a dual-branch adaptive spectral-spatial fusion gating mechanism (ASSF), which captures spectral-spatial fusion features effectively from images. The ASSF comprises two key components: the point depthwise attention module (PDWA) for spectral feature extraction and the asymmetric depthwise attention module (ADWA) for spatial feature extraction. The model efficiently obtains spectral-spatial fusion features by multiplying the outputs of these two branches. Furthermore, we integrate the layer scale and DropKey into the traditional transformer encoder and multi-head self-attention (MHSA) to form a new transformer with a layer scale and DropKey (LD-Former). This innovation enhances data dynamics and mitigates performance degradation in deeper encoder layers. The experiments detailed in this article are executed on four renowned datasets: Trento (TR), MUUFL (MU), Augsburg (AU), and the University of Pavia (UP). The findings demonstrate that the ALSST model secures optimal performance, surpassing some existing models. The overall accuracy (OA) is 99.70%, 89.72%, 97.84%, and 99.78% on four famous datasets: Trento (TR), MUUFL (MU), Augsburg (AU), and University of Pavia (UP), respectively.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Dilated Spectral-Spatial Gaussian Transformer Net for Hyperspectral Image Classification
    Zhang, Zhenbei
    Wang, Shuo
    Zhang, Weilin
    REMOTE SENSING, 2024, 16 (02)
  • [22] SSBFNet: a spectral-spatial fusion with BiFormer network for hyperspectral image classification
    Wu, Honglin
    Yu, Xinyu
    Zeng, Zhaobin
    VISUAL COMPUTER, 2024,
  • [23] CentralFormer: Centralized Spectral-Spatial Transformer for Hyperspectral Image Classification With Adaptive Relevance Estimation and Circular Pooling
    Li, Ningyang
    Wang, Zhaohui
    Cheikh, Faouzi Alaya
    Wang, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [24] Foundation Model-Based Spectral-Spatial Transformer for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [25] LESSFormer: Local-Enhanced Spectral-Spatial Transformer for Hyperspectral Image Classification
    Zou, Jiaqi
    He, Wei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [26] Spectral-Spatial Center-Aware Bottleneck Transformer for Hyperspectral Image Classification
    Zhang, Meng
    Yang, Yi
    Zhang, Sixian
    Mi, Pengbo
    Han, Deqiang
    REMOTE SENSING, 2024, 16 (12)
  • [27] A Light-Weighted Spectral-Spatial Transformer Model for Hyperspectral Image Classification
    Arshad, Tahir
    Zhang, Junping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 12008 - 12019
  • [28] Spectral-Spatial Masked Transformer With Supervised and Contrastive Learning for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Spectral-Spatial Response for Hyperspectral Image Classification
    Wei, Yantao
    Zhou, Yicong
    Li, Hong
    REMOTE SENSING, 2017, 9 (03):
  • [30] Masked Auto-Encoding Spectral-Spatial Transformer for Hyperspectral Image Classification
    Ibanez, Damian
    Fernandez-Beltran, Ruben
    Pla, Filiberto
    Yokoya, Naoto
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60