CentralFormer: Centralized Spectral-Spatial Transformer for Hyperspectral Image Classification With Adaptive Relevance Estimation and Circular Pooling

被引:0
|
作者
Li, Ningyang [1 ]
Wang, Zhaohui [1 ]
Cheikh, Faouzi Alaya [2 ]
Wang, Lei [3 ,4 ]
机构
[1] Hainan Univ, Fac Comp Sci & Technol, Haikou 570228, Peoples R China
[2] Norwegian Univ Sci & Technol, Fac Informat Technol & Elect, Dept Comp Sci, N-2815 Gjovik, Norway
[3] Hainan Aerosp Informat Res Inst, Key Lab Earth Observat Hainan Prov, Wenchang 571300, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
芬兰科学院;
关键词
Feature extraction; Transformers; Computer architecture; Hyperspectral imaging; Correlation; Computational modeling; Computational complexity; Accuracy; Kernel; Image classification; Attention mechanism; center pixel; circular pooling (CP); hyperspectral image (HSI) classification; relevant area; transformer; NETWORK;
D O I
10.1109/TGRS.2024.3509455
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Classification of hyperspectral image (HSI) is a hotspot in the field of remote sensing. Recent deep learning (DL)-based approaches, especially for the transformer architectures, have been investigated to extract the deep spectral-spatial features. However, the ability of these approaches to efficiently represent the crucial attention patterns and distinguishing features suffers from the neglect of the relevant areas, including the center pixel and high computational complexity; thereby, their classification performances still need to be improved. This article proposes a centralized spectral-spatial transformer (CentralFormer), which contains the central encoder, the adaptive relevance estimation (ARE) module, and the cross-encoder relevance fusion (CERF) module, for HSI classification. To recognize the relevant areas, the ARE modules access both spectral and spatial associations between the center pixel and its neighborhoods flexibly. By focusing on these areas and emphasizing them during attention inference, the central encoders can extract the key attention modes and discriminating features effectively. Moreover, the CERF modules are deployed to prevent the reliability of the relevance map from being harmed by the feature deviation between encoders. To handle the high computational occupancy, a novel circular pooling (CP) strategy reduces the circles and bands of features. Unlike regular pooling methods, it can well improve the relevant characteristics for subsequent encoders. By integrating these techniques, the CentralFormer model can represent the discriminating spectral-spatial features efficiently for HSI classification. Experimental results on four classic HSI datasets reveal that the proposed CentralFormer model outperforms the state-of-the-arts in terms of both classification accuracy and computational efficiency. The source code is available at https://github.com/ningyang-li/CentralFormer.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Adaptive Learnable Spectral-Spatial Fusion Transformer for Hyperspectral Image Classification
    Wang, Minhui
    Sun, Yaxiu
    Xiang, Jianhong
    Sun, Rui
    Zhong, Yu
    REMOTE SENSING, 2024, 16 (11)
  • [2] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [3] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] MultiScale spectral-spatial convolutional transformer for hyperspectral image classification
    Gong, Zhiqiang
    Zhou, Xian
    Yao, Wen
    IET IMAGE PROCESSING, 2024, 18 (13) : 4328 - 4340
  • [7] WaveFormer: Spectral-Spatial Wavelet Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Ghous, Usman
    Usama, Muhammad
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [8] HyperMamba: A Spectral-Spatial Adaptive Mamba for Hyperspectral Image Classification
    Liu, Qiang
    Yue, Jun
    Fang, Yi
    Xia, Shaobo
    Fang, Leyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] MULTISCALE SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION WITH ADAPTIVE FILTERING
    Wu, Sifan
    Zhang, Junping
    Shi, Chunyu
    Li, Weike
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2591 - 2594
  • [10] A multi-range spectral-spatial transformer for hyperspectral image classification
    Zhang, Lan
    Wang, Yang
    Yang, Linzi
    Chen, Jianfeng
    Liu, Zijie
    Wang, Jihong
    Bian, Lifeng
    Yang, Chen
    INFRARED PHYSICS & TECHNOLOGY, 2023, 135