Self-reconstruction network for fine-grained few-shot classification

被引:6
|
作者
Li, Xiaoxu [1 ,2 ]
Li, Zhen [1 ]
Xie, Jiyang [2 ]
Yang, Xiaochen [3 ]
Xue, Jing-Hao [4 ]
Ma, Zhanyu [2 ]
机构
[1] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Pattern Recognit & Intelligent Syst Lab, Beijing 100876, Peoples R China
[3] Univ Glasgow, Sch Math & Stat, Glasgow City G12 8QQ, Scotland
[4] UCL, Dept Stat Sci, London WC1E 6BT, England
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Few-shot learning; Fine-grained image classification; Deep neural network; Self-reconstruction network;
D O I
10.1016/j.patcog.2024.110485
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metric -based methods are one of the most common methods to solve the problem of few -shot image classification. However, traditional metric -based few -shot methods suffer from overfitting and local feature misalignment. The recently proposed feature reconstruction -based approach, which reconstructs query image features from the support set features of a given class and compares the distance between the original query features and the reconstructed query features as the classification criterion, effectively solves the feature misalignment problem. However, the issue of overfitting still has not been considered. To this end, we propose a self -reconstruction metric module for diversifying query features and a restrained cross -entropy loss for avoiding over -confident predictions. By introducing them, the proposed self -reconstruction network can effectively alleviate overfitting. Extensive experiments on five benchmark fine-grained datasets demonstrate that our proposed method achieves state-of-the-art performance on both 5 -way 1 -shot and 5 -way 5 -shot classification tasks. Code is available at https://github.com/liz-lut/SRM-main.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Task Discrepancy Maximization for Fine-grained Few-Shot Classification
    Lee, SuBeen
    Moon, WonJun
    Heo, Jae-Pil
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5321 - 5330
  • [12] Few-shot fine-grained classification with Spatial Attentive Comparison
    Ruan, Xiaoqian
    Lin, Guosheng
    Long, Cheng
    Lu, Shengli
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [13] Global and Local Attention Embedding Network for Few-Shot Fine-Grained Image Classification
    Hu, Jiayuan
    Own, Chung-Ming
    Tao, Wenyuan
    WEB AND BIG DATA, PT I, APWEB-WAIM 2020, 2020, 12317 : 740 - 747
  • [14] Large Margin Prototypical Network for Few-shot Relation Classification with Fine-grained Features
    Fan, Miao
    Bai, Yeqi
    Sun, Mingming
    Li, Ping
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2353 - 2356
  • [15] BSNet: Bi-Similarity Network for Few-shot Fine-grained Image Classification
    Li, Xiaoxu
    Wu, Jijie
    Sun, Zhuo
    Ma, Zhanyu
    Cao, Jie
    Xue, Jing-Hao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 (30) : 1318 - 1331
  • [16] KNOWLEDGE-BASED FINE-GRAINED CLASSIFICATION FOR FEW-SHOT LEARNING
    Zhao, Jiabao
    Lin, Xin
    Zhou, Jie
    Yang, Jing
    He, Liang
    Yang, Zhaohui
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [17] A Multiview Metric Learning Method for Few-Shot Fine-Grained Classification
    Miao, Zhuang
    Zhao, Xun
    Wang, Jiabao
    Xu, Bo
    Li, Yang
    Li, Hang
    IEEE ACCESS, 2022, 10 : 52782 - 52790
  • [18] Locally-Enriched Cross-Reconstruction for Few-Shot Fine-Grained Image Classification
    Li, Xiaoxu
    Song, Qi
    Wu, Jijie
    Zhu, Rui
    Ma, Zhanyu
    Xue, Jing-Hao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) : 7530 - 7540
  • [19] Relation Awareness Network for Few-Shot Fine-Grained Fault Diagnosis
    Xu, Yan
    Ma, Xinyao
    Wang, Xuan
    Wang, Jinjia
    Tang, Gang
    Ji, Zhong
    IEEE SENSORS JOURNAL, 2024, 24 (13) : 20949 - 20958
  • [20] Few-shot image classification using graph neural network with fine-grained feature descriptors
    Ganesan, Priyanka
    Jagatheesaperumal, Senthil Kumar
    Hassan, Mohammad Mehedi
    Pupo, Francesco
    Fortino, Giancarlo
    NEUROCOMPUTING, 2024, 610