Bifurcation and asymptotics of cubically nonlinear transverse magnetic surface plasmon polaritons

被引:1
|
作者
Dohnal, Tomas [1 ]
He, Runan [1 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Math, D-06120 Halle, Germany
关键词
Nonlinear Maxwell equations; Surface plasmon; Bifurcation; Operator pencil; PT-symmetry; Asymptotic expansion;
D O I
10.1016/j.jmaa.2024.128422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear Maxwell equations for transverse magnetic (TM) polarized fields support single frequency surface plasmon polaritons (SPPs) localized at the interface of a metal and a dielectric. Metals are typically dispersive, i.e. the dielectric function depends on the frequency. We prove the bifurcation of localized SPPs in dispersive media in the presence of a cubic nonlinearity and provide an asymptotic expansion of the solution and the frequency. The problem is reduced to a system of nonlinear differential equations in one spatial dimension by assuming a plane wave dependence in the direction tangential to the (flat) interfaces. The number of interfaces is arbitrary and the nonlinear system is solved in a subspace of functions with the H 1 -Sob olev regularity in each material layer. The corresponding linear system is an operator pencil in the frequency parameter due to the material dispersion. The studied bifurcation occurs at a simple isolated eigenvalue of the pencil. For geometries consisting of two or three homogeneous layers we provide explicit conditions on the existence of eigenvalues and on their simpleness and isolatedness. Real frequencies are shown to exist in the nonlinear setting in the case of PT -symmetric materials. We also apply a finite difference numerical method to the nonlinear system and compute bifurcating curves. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:37
相关论文
共 50 条
  • [41] Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators
    Nasari, Hadiseh
    Abrishamian, Mohammad Sadegh
    Berini, Pierre
    OPTICS EXPRESS, 2016, 24 (01): : 708 - 723
  • [42] Localized surface plasmon polaritons and nonlinear overcoming of the diffraction optical limit
    Makin, V. S.
    Logacheva, E. I.
    Makin, R. S.
    OPTICS AND SPECTROSCOPY, 2016, 120 (04) : 610 - 614
  • [43] Second Order Nonlinear Optics with Long Range Surface Plasmon Polaritons
    Khurgin, Jacob B.
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 377 - 378
  • [44] Effect of anisotropy on nonlinear surface plasmon polaritons in anisotropic/metal/nonlinear slab waveguides
    Ajith, Ramachandran
    Mathew, Vincent
    JOURNAL OF NANOPHOTONICS, 2016, 10 (03)
  • [45] Regenerated surface plasmon polaritons
    Lee, TW
    Gray, SK
    APPLIED PHYSICS LETTERS, 2005, 86 (14) : 1 - 3
  • [46] Simulation of surface plasmon polaritons
    Sjodin, Bjorn
    LASER FOCUS WORLD, 2023, 59 (04): : 41 - 44
  • [47] Inhomogeneous Surface Plasmon Polaritons
    Foley, Jonathan J.
    McMahon, Jeffrey M.
    Schatz, George C.
    Harutyunyan, Hayk
    Wiederrecht, Gary P.
    Gray, Stephen K.
    ACS PHOTONICS, 2014, 1 (08): : 739 - 745
  • [48] The transverse magnetic surface plasmon in anisotropic black phosphorene
    Yang, C. H.
    Wieser, R.
    Zhang, J. Y.
    Xu, W.
    OPTICS COMMUNICATIONS, 2020, 474
  • [49] Surface Plasmon-Polaritons and Transverse Spin Angular Momentum at the Boundary of Hyperbolic Metamaterials
    S. N. Kurilkina
    V. N. Belyi
    N. S. Kazak
    Journal of Applied Spectroscopy, 2017, 83 : 965 - 969
  • [50] Surface Plasmon-Polaritons and Transverse Spin Angular Momentum at the Boundary of Hyperbolic Metamaterials
    Kurilkina, S. N.
    Belyi, V. N.
    Kazak, N. S.
    JOURNAL OF APPLIED SPECTROSCOPY, 2017, 83 (06) : 965 - 969