Bifurcation and asymptotics of cubically nonlinear transverse magnetic surface plasmon polaritons

被引:1
|
作者
Dohnal, Tomas [1 ]
He, Runan [1 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Math, D-06120 Halle, Germany
关键词
Nonlinear Maxwell equations; Surface plasmon; Bifurcation; Operator pencil; PT-symmetry; Asymptotic expansion;
D O I
10.1016/j.jmaa.2024.128422
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear Maxwell equations for transverse magnetic (TM) polarized fields support single frequency surface plasmon polaritons (SPPs) localized at the interface of a metal and a dielectric. Metals are typically dispersive, i.e. the dielectric function depends on the frequency. We prove the bifurcation of localized SPPs in dispersive media in the presence of a cubic nonlinearity and provide an asymptotic expansion of the solution and the frequency. The problem is reduced to a system of nonlinear differential equations in one spatial dimension by assuming a plane wave dependence in the direction tangential to the (flat) interfaces. The number of interfaces is arbitrary and the nonlinear system is solved in a subspace of functions with the H 1 -Sob olev regularity in each material layer. The corresponding linear system is an operator pencil in the frequency parameter due to the material dispersion. The studied bifurcation occurs at a simple isolated eigenvalue of the pencil. For geometries consisting of two or three homogeneous layers we provide explicit conditions on the existence of eigenvalues and on their simpleness and isolatedness. Real frequencies are shown to exist in the nonlinear setting in the case of PT -symmetric materials. We also apply a finite difference numerical method to the nonlinear system and compute bifurcating curves. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:37
相关论文
共 50 条
  • [21] NONLINEAR S-POLARIZED SURFACE-PLASMON POLARITONS
    STEGEMAN, GI
    VALERA, JD
    SEATON, CT
    SIPE, J
    MARADUDIN, AA
    SOLID STATE COMMUNICATIONS, 1984, 52 (03) : 293 - 297
  • [22] Linear, nonlinear and ultrafast behavior of surface plasmon polaritons in nanostructures
    Sandtke, M.
    Engelen, R. J. P.
    Prangsma, J.
    van Nieuwstadt, J. A. H.
    Harmsen, R. H.
    Enoch, S.
    Kuipers, L.
    PIERS 2007 BEIJING: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PTS I AND II, PROCEEDINGS, 2007, : 1046 - +
  • [23] Nonlinear surface magnetic polaritons in a nonuniform magnetic field
    S. V. Grimal’skii
    S. V. Koshevaya
    A. M. Resin
    Technical Physics, 1998, 43 : 1091 - 1093
  • [24] Nonlinear Plasmon-Polaritons
    Shadrivov, Ilya
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 379 - 380
  • [25] Extended frequency range of transverse-electric surface plasmon polaritons in graphene
    Ahmad, Zeeshan
    Muljarov, Egor A.
    Oh, Sang Soon
    PHYSICAL REVIEW B, 2021, 104 (08)
  • [26] Enlarging spin-dependent transverse displacement of surface plasmon polaritons focus
    Sun, Yuqing
    Zhao, Chunying
    Li, Guoqun
    Li, Xing
    Wang, Sen
    OPTICS EXPRESS, 2019, 27 (08): : 11112 - 11121
  • [27] Enhanced magnetic modulation of surface plasmon polaritons on hyperbolic metasurfaces
    Kuzmin, Dmitry A.
    Usik, Maksim O.
    Bychkov, Igor V.
    Bugaev, Aleksandr S.
    Shavrov, Vladimir G.
    Temnov, Vasily V.
    OPTICS LETTERS, 2023, 48 (13) : 3479 - 3482
  • [28] Magnetic-field modulation of surface plasmon polaritons on gratings
    Clavero, C.
    Yang, K.
    Skuza, J. R.
    Lukaszew, R. A.
    OPTICS LETTERS, 2010, 35 (10) : 1557 - 1559
  • [29] Transverse Anderson localization of channel plasmon polaritons
    Petracek, J.
    Kuzmiak, V
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [30] Surface plasmon polaritons enhanced magnetic plasmon resonance for high-quality sensing
    Chen, Jing
    Cheng, Lu
    Zhao, Lianjie
    Gu, Ping
    Yan, Zhendong
    Tang, Chaojun
    Gao, Fan
    Zhu, Mingwei
    APPLIED PHYSICS EXPRESS, 2022, 15 (12)