Coupling of unsupervised and supervised deep learning-based approaches for surface anomaly detection

被引:0
|
作者
Racki, Domen [1 ,2 ]
Tomazevic, Dejan [1 ,3 ]
Skocaj, Danijel [2 ]
机构
[1] Sensum Comp Vis Syst, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
[3] Univ Ljubljana, Fac Elect Engn, Ljubljana, Slovenia
关键词
surface defect detection; segmentation; visual inspection; quality control; solid oral dosage forms; pharmaceutical industry; deep learning; convolutional neural networks;
D O I
10.1117/1.JEI.33.3.031207
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
. Anomaly detection (AD) in an unsupervised manner has become the go-to approach in applications where data labeling proves problematic. However, these approaches are not completely unsupervised, since they rely on the weak knowledge of the dataset distribution into anomalous and anomaly-free subsets and typically require post-training threshold calibration in order to perform AD. Yet, they do not take advantage of available positive samples during training. In contrast, fully supervised approaches have proven to be more accurate and more efficient; however, they require a sufficient number of anomalous images to be labeled on a per-pixel level, which represents a labor-intensive task. In this article, we propose a hybrid approach that utilizes the best of both worlds. We use an unsupervised approach to build a model for generating pseudo labels, followed by a supervised approach to increase the robustness of AD. Moreover, we extend this approach with an active learning schema that results in learning with mixed supervision. We achieve several improvements, i.e., the utilization of available positive image samples, improved AD performance, and the retention of real-time performance. The proposed approach yields results that are comparable to the fully supervised approach, and at the very least, reduces the number of required labeled anomalous samples.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Deep learning-based supervised and unsupervised neural networks for analysing the characteristics of powder composite preforms
    Pavanasam, Radha
    Chandrasekaran, G.
    Selvakumar, N.
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2021, 41 (06): : 451 - 462
  • [42] Contrastive Self-Supervised Learning-Based Background Reconstruction for Hyperspectral Anomaly Detection
    Sun, Xiaoming
    Zhang, Yuxiang
    Dong, Yanni
    Du, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [43] Comparative Analysis of Machine Learning-Based Approaches for Anomaly Detection in Vehicular Data
    Demestichas, Konstantinos
    Alexakis, Theodoros
    Peppes, Nikolaos
    Adamopoulou, Evgenia
    VEHICLES, 2021, 3 (02): : 171 - 186
  • [44] IoT Botnet Anomaly Detection Using Unsupervised Deep Learning
    Apostol, Ioana
    Preda, Marius
    Nila, Constantin
    Bica, Ion
    ELECTRONICS, 2021, 10 (16)
  • [45] Learning deep feature correspondence for unsupervised anomaly detection and segmentation
    Yang, Jie
    Shi, Yong
    Qi, Zhiquan
    PATTERN RECOGNITION, 2022, 132
  • [46] Unsupervised Deep Transfer Learning-Based Change Detection for HR Multispectral Images
    Saha, Sudipan
    Solano-Correa, Yady Tatiana
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 856 - 860
  • [47] A Learning-Based Framework for Supervised and Unsupervised Image Segmentation Evaluation
    Lin, Jian
    Peng, Bo
    Li, Tianrui
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2014, 14 (03)
  • [48] A Novel Deep Supervised Learning-Based Approach for Intrusion Detection in IoT Systems
    Baniasadi, Sahba
    Rostami, Omid
    Martin, Diego
    Kaveh, Mehrdad
    SENSORS, 2022, 22 (12)
  • [49] Failure Modeling of a Propulsion Subsystem: Unsupervised and Semi-Supervised Approaches to Anomaly Detection
    Cheung, Catherine
    Valdes, Julio J.
    Chavez, Richard Salas
    Sehgal, Srishti
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2019, 33 (11)
  • [50] Semi-supervised Deep Learning for Network Anomaly Detection
    Sun, Yuanyuan
    Guo, Lili
    Li, Ye
    Xu, Lele
    Wang, Yongming
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2019, PT II, 2020, 11945 : 383 - 390