UAV remote sensing phenotyping of wheat collection for response to water stress and yield prediction using machine learning

被引:7
|
作者
Sharma, Vikas [1 ,2 ]
Honkavaara, Eija [3 ]
Hayden, Matthew [2 ,4 ]
Kant, Surya [1 ,2 ,4 ,5 ]
机构
[1] Agr Victoria, Grains Innovat Pk, 110 Natimuk Rd, Horsham, Vic 3400, Australia
[2] La Trobe Univ, Sch Appl Syst Biol, Bundoora, Vic 3083, Australia
[3] Natl Land Survey Finland, Finnish Geospatial Res Inst, Espoo 02150, Finland
[4] Agr Victoria, Ctr AgriBiosc, AgriBio, 5 Ring Rd, Bundoora, Vic 3083, Australia
[5] Univ Melbourne, Sch Agr Food & Ecosyst Sci, Parkville, Vic 3010, Australia
来源
PLANT STRESS | 2024年 / 12卷
关键词
High -throughput crop phenotyping; Yield prediction; Machine learning; Multispectral; UAV; Water stress; FIELD; SELECTION; DROUGHT;
D O I
10.1016/j.stress.2024.100464
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Water stress is a significant challenge for global food production. Rainfall pattern is becoming unpredictable due to climate change that causes unprecedent water stress conditions in cereals production including wheat which is one of the important staple food crops. To sustain wheat production under water limiting conditions, there is an urgent need to develop drought-tolerant wheat varieties. For this, screening large numbers of wheat genotype for traits related to growth and yield under water stressed conditions is crucial. In this study, we deployed high-throughput phenotyping approaches, including uncrewed aerial vehicle (UAV)-based multispectral imaging, advanced machine and deep learning regression models. Two separate field experiments, irrigated and rainfed, were conducted comprising 553 wheat genotypes, and collected dataset for traits such as plant height, phenology, grain yield, and timeseries multispectral imaging. UAV-multispectral imagery derived plant height measurements showed a high correlation (R-2=0.75) with manual measurements. Vegetation indices derived from multispectral data differentiated growth pattern of genotypes under rainfed and irrigated conditions and were used in yield prediction modeling. Wheat genotypes were effectively ranked, and their response differentiated for water stress tolerance based on yield index, stress susceptibility index, and yield loss%. Importantly, yield prediction in genotypes was computed using four machine learning regression algorithms i.e., linear regression, support vector machine, random forest, and deep learning H2O-3, where H2O-3 was the most accurate model with R-2=0.80. Results show that multispectral-driven traits combined with machine learning models effectively phenotyped large wheat population and such approaches can be integrated in crop breeding program to develop varieties tolerant to water stress.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Remote sensing of nitrogen and water stress in wheat
    Tilling, Adam K.
    O'Leary, Garry J.
    Ferwerda, Jelle G.
    Jones, Simon D.
    Fitzgerald, Glenn J.
    Rodriguez, Daniel
    Belford, Robert
    FIELD CROPS RESEARCH, 2007, 104 (1-3) : 77 - 85
  • [32] High-throughput phenotyping for different genotype wheat frost using UAV-based remote sensing
    Liu Y.
    Yu R.
    Wu J.
    Han D.
    Su B.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (05): : 128 - 136
  • [33] Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data
    Bian, Chaofa
    Shi, Hongtao
    Wu, Suqin
    Zhang, Kefei
    Wei, Meng
    Zhao, Yindi
    Sun, Yaqin
    Zhuang, Huifu
    Zhang, Xuewei
    Chen, Shuo
    REMOTE SENSING, 2022, 14 (06)
  • [34] Improving wheat yield prediction integrating proximal sensing and weather data with machine learning
    Ruan, Guojie
    Li, Xinyu
    Yuan, Fei
    Cammarano, Davide
    Ata-UI-Karim, Syed Tahir
    Liu, Xiaojun
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    Cao, Qiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 195
  • [35] Detecting Water Stress in Winter Wheat Based on Multifeature Fusion from UAV Remote Sensing and Stacking Ensemble Learning Method
    Zhao, He
    Wang, Jingjing
    Guo, Jiali
    Hui, Xin
    Wang, Yunling
    Cai, Dongyu
    Yan, Haijun
    REMOTE SENSING, 2024, 16 (21)
  • [36] Optimizing machine learning models for wheat yield estimation using a comprehensive UAV dataset
    Khodjaev, Shovkat
    Bobojonov, Ihtiyor
    Kuhn, Lena
    Glauben, Thomas
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (01)
  • [37] Cropland prediction using remote sensing, ancillary data, and machine learning
    Katal, Nitish
    Hooda, Nishtha
    Sharma, Ashish
    Sharma, Bhisham
    JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (02)
  • [38] Integration of Machine Learning and Remote Sensing for Water Quality Monitoring and Prediction: A Review
    Mohan, Shashank
    Kumar, Brajesh
    Nejadhashemi, A. Pouyan
    SUSTAINABILITY, 2025, 17 (03)
  • [39] Winter Wheat Yield Estimation Based on UAV Hyperspectral Remote Sensing Data
    Tao H.
    Xu L.
    Feng H.
    Yang G.
    Yang X.
    Niu Y.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (07): : 146 - 155
  • [40] Monitoring soil nutrients using machine learning based on UAV hyperspectral remote sensing
    Liu, Kai
    Wang, Yufeng
    Peng, Zhiqing
    Xu, Xinxin
    Liu, Jingjing
    Song, Yuehui
    Di, Huige
    Hua, Dengxin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4897 - 4921