UAV remote sensing phenotyping of wheat collection for response to water stress and yield prediction using machine learning

被引:3
|
作者
Sharma, Vikas [1 ,2 ]
Honkavaara, Eija [3 ]
Hayden, Matthew [2 ,4 ]
Kant, Surya [1 ,2 ,4 ,5 ]
机构
[1] Agr Victoria, Grains Innovat Pk, 110 Natimuk Rd, Horsham, Vic 3400, Australia
[2] La Trobe Univ, Sch Appl Syst Biol, Bundoora, Vic 3083, Australia
[3] Natl Land Survey Finland, Finnish Geospatial Res Inst, Espoo 02150, Finland
[4] Agr Victoria, Ctr AgriBiosc, AgriBio, 5 Ring Rd, Bundoora, Vic 3083, Australia
[5] Univ Melbourne, Sch Agr Food & Ecosyst Sci, Parkville, Vic 3010, Australia
来源
PLANT STRESS | 2024年 / 12卷
关键词
High -throughput crop phenotyping; Yield prediction; Machine learning; Multispectral; UAV; Water stress; FIELD; SELECTION; DROUGHT;
D O I
10.1016/j.stress.2024.100464
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Water stress is a significant challenge for global food production. Rainfall pattern is becoming unpredictable due to climate change that causes unprecedent water stress conditions in cereals production including wheat which is one of the important staple food crops. To sustain wheat production under water limiting conditions, there is an urgent need to develop drought-tolerant wheat varieties. For this, screening large numbers of wheat genotype for traits related to growth and yield under water stressed conditions is crucial. In this study, we deployed high-throughput phenotyping approaches, including uncrewed aerial vehicle (UAV)-based multispectral imaging, advanced machine and deep learning regression models. Two separate field experiments, irrigated and rainfed, were conducted comprising 553 wheat genotypes, and collected dataset for traits such as plant height, phenology, grain yield, and timeseries multispectral imaging. UAV-multispectral imagery derived plant height measurements showed a high correlation (R-2=0.75) with manual measurements. Vegetation indices derived from multispectral data differentiated growth pattern of genotypes under rainfed and irrigated conditions and were used in yield prediction modeling. Wheat genotypes were effectively ranked, and their response differentiated for water stress tolerance based on yield index, stress susceptibility index, and yield loss%. Importantly, yield prediction in genotypes was computed using four machine learning regression algorithms i.e., linear regression, support vector machine, random forest, and deep learning H2O-3, where H2O-3 was the most accurate model with R-2=0.80. Results show that multispectral-driven traits combined with machine learning models effectively phenotyped large wheat population and such approaches can be integrated in crop breeding program to develop varieties tolerant to water stress.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] UAV Remote Sensing Prediction Method of Winter Wheat Yield Based on the Fused Features of Crop and Soil
    Tian, Zezhong
    Zhang, Yao
    Liu, Kaidi
    Li, Zhenhai
    Li, Minzan
    Zhang, Haiyang
    Wu, Jiangmei
    [J]. REMOTE SENSING, 2022, 14 (19)
  • [22] Tackling Food Insecurity Using Remote Sensing and Machine Learning-Based Crop Yield Prediction
    Shafi, Uferah
    Mumtaz, Rafia
    Anwar, Zahid
    Ajmal, Muhammad Muzyyab
    Khan, Muhammad Ajmal
    Mahmood, Zahid
    Qamar, Maqsood
    Jhanzab, Hafiz Muhammad
    [J]. IEEE ACCESS, 2023, 11 : 108640 - 108657
  • [23] Estimation of wheat biophysical variables through UAV hyperspectral remote sensing using machine learning and radiative transfer models
    Sahoo, Rabi N.
    Rejith, R. G.
    Gakhar, Shalini
    Verrelst, Jochem
    Ranjan, Rajeev
    Kondraju, Tarun
    Meena, Mahesh C.
    Mukherjee, Joydeep
    Dass, Anchal
    Kumar, Sudhir
    Kumar, Mahesh
    Dhandapani, Raju
    Chinnusamy, Viswanathan
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 221
  • [24] Assessing the Yield of Wheat Using Satellite Remote Sensing-Based Machine Learning Algorithms and Simulation Modeling
    Meraj, Gowhar
    Kanga, Shruti
    Ambadkar, Abhijeet
    Kumar, Pankaj
    Singh, Suraj Kumar
    Farooq, Majid
    Johnson, Brian Alan
    Rai, Akshay
    Sahu, Netrananda
    [J]. REMOTE SENSING, 2022, 14 (13)
  • [25] High-throughput phenotyping for different genotype wheat frost using UAV-based remote sensing
    Liu, Yixue
    Yu, Rui
    Wu, Jianhui
    Han, Dejun
    Su, Baofeng
    [J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (05): : 128 - 136
  • [26] Remote sensing of nitrogen and water stress in wheat
    Tilling, Adam K.
    O'Leary, Garry J.
    Ferwerda, Jelle G.
    Jones, Simon D.
    Fitzgerald, Glenn J.
    Rodriguez, Daniel
    Belford, Robert
    [J]. FIELD CROPS RESEARCH, 2007, 104 (1-3) : 77 - 85
  • [27] Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data
    Bian, Chaofa
    Shi, Hongtao
    Wu, Suqin
    Zhang, Kefei
    Wei, Meng
    Zhao, Yindi
    Sun, Yaqin
    Zhuang, Huifu
    Zhang, Xuewei
    Chen, Shuo
    [J]. REMOTE SENSING, 2022, 14 (06)
  • [28] Detecting Water Stress in Winter Wheat Based on Multifeature Fusion from UAV Remote Sensing and Stacking Ensemble Learning Method
    Zhao, He
    Wang, Jingjing
    Guo, Jiali
    Hui, Xin
    Wang, Yunling
    Cai, Dongyu
    Yan, Haijun
    [J]. Remote Sensing, 2024, 16 (21)
  • [29] Improving wheat yield prediction integrating proximal sensing and weather data with machine learning
    Ruan, Guojie
    Li, Xinyu
    Yuan, Fei
    Cammarano, Davide
    Ata-UI-Karim, Syed Tahir
    Liu, Xiaojun
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    Cao, Qiang
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 195
  • [30] Cropland prediction using remote sensing, ancillary data, and machine learning
    Katal, Nitish
    Hooda, Nishtha
    Sharma, Ashish
    Sharma, Bhisham
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2023, 17 (02)