Visualizing entanglement in multiqubit systems

被引:1
|
作者
Bley, Jonas [1 ]
Rexigel, Eva [1 ]
Arias, Alda [1 ,2 ]
Longen, Nikolas [3 ]
Krupp, Lars [3 ,4 ]
Kiefer-Emmanouilidis, Maximilian [1 ,3 ,4 ]
Lukowicz, Paul [3 ,4 ]
Donhauser, Anna [2 ]
Kuechemann, Stefan [2 ]
Kuhn, Jochen [2 ]
Widera, Artur [1 ]
机构
[1] Res Ctr OPTIMAS, Dept Phys, RPTU Kaiserslautern Landau, D-67663 Kaiserslautern, Germany
[2] Ludwig Maximilians Univ Munchen, Fac Phys, Chair Phys Educ, D-80539 Munich, Germany
[3] RPTU Kaiserslautern Landau, Dept Comp Sci & Res Initiat QC AI, D-67663 Kaiserslautern, Germany
[4] German Res Ctr Artificial Intelligence, Embedded Intelligence, Kaiserslautern, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
PRODUCT OPERATOR-FORMALISM; QUANTUM; TELEPORTATION;
D O I
10.1103/PhysRevResearch.6.023077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the field of quantum information science and technology, the representation and visualization of quantum states and related processes are essential for both research and education. In this context, a focus lies especially on ensembles of few qubits. There exist many powerful representations for single-qubit and multiqubit systems, such as the famous Bloch sphere and generalizations. Here, we utilize the dimensional circle notation as a representation of such ensembles, adapting the so-called circle notation of qubits and the idea of representing the n-particle system in an n-dimensional space. We show that the mathematical conditions for separability lead to symmetry conditions of the quantum state visualized, offering a new perspective on entanglement in few-qubit systems and therefore on various quantum algorithms. In this way, dimensional notations promise significant potential for conveying nontrivial quantum entanglement properties and processes in few-qubit systems to a broader audience, and could enhance understanding of these concepts as a bridge between intuitive quantum insight and formal mathematical descriptions.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Quantum entanglement in dense multiqubit systems
    Macovei, Mihai
    Evers, Joerg
    Keitel, Christoph H.
    JOURNAL OF MODERN OPTICS, 2010, 57 (14-15) : 1287 - 1292
  • [2] Evolution equation for entanglement of multiqubit systems
    Siomau, Michael
    Fritzsche, Stephan
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [3] Tsallis entropy and entanglement constraints in multiqubit systems
    Kim, Jeong San
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [4] Entangled graphs: Bipartite entanglement in multiqubit systems
    Plesch, Martin
    Bužek, Vladimiár
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (01): : 1 - 012322
  • [5] Entangled graphs: Bipartite entanglement in multiqubit systems
    Plesch, M
    Buzek, V
    PHYSICAL REVIEW A, 2003, 67 (01):
  • [6] General Monogamy Relation for the Entanglement of Formation in Multiqubit Systems
    Bai, Yan-Kui
    Xu, Yuan-Fei
    Wang, Z. D.
    PHYSICAL REVIEW LETTERS, 2014, 113 (10)
  • [7] Monogamy of entanglement measures based on fidelity in multiqubit systems
    Limin Gao
    Fengli Yan
    Ting Gao
    Quantum Information Processing, 2021, 20
  • [8] Multiqubit systems: highly entangled states and entanglement distribution
    Borras, A.
    Plastino, A. R.
    Batle, J.
    Zander, C.
    Casas, M.
    Plastino, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (44) : 13407 - 13421
  • [9] Entanglement robustness against particle loss in multiqubit systems
    Neven, A.
    Martin, J.
    Bastin, T.
    PHYSICAL REVIEW A, 2018, 98 (06)
  • [10] Monogamy of entanglement measures based on fidelity in multiqubit systems
    Gao, Limin
    Yan, Fengli
    Gao, Ting
    QUANTUM INFORMATION PROCESSING, 2021, 20 (10)