A Collaborative Scheduling Lane Changing Model for Intelligent Connected Vehicles Based on Deep Reinforcement Learning

被引:0
|
作者
Cui, Zheyu [1 ]
Hu, Jianming [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The traditional lane-changing trajectory planning model divides road conditions into obstacle-changing trajectory design and barrier-free lane-changing trajectory design. Due to the constraints of dynamic obstacles, the obstacle-lane-changing trajectory design will introduce a larger amount of calculation than the barrier-free lane-changing trajectory design. This increases the delay and reduces safety. In order to overcome these shortcomings, this paper proposes a cooperative scheduling lane changing model for intelligent connected vehicle based on deep reinforcement learning. The collaborative scheduling algorithm acts on the trajectory planning layer to unify all lane-changing trajectory designs into barrier-free trajectory designs to reduce the amount of computation. The lane change decision maker based on deep reinforcement learning determines the optimal moment of the cooperative scheduling algorithm. Finally, the paper verifies that the proposed model has a significant improvement in traffic efficiency by comparing with the traditional lane changing model under different traffic density.
引用
下载
收藏
页码:2118 / 2129
页数:12
相关论文
共 50 条
  • [41] Efficient Mandatory Lane Changing of Connected and Autonomous Vehicles
    Lin, Shang-Chien
    Kung, Chia-Chu
    Lin, Lee
    Lin, Chung-Wei
    Jiang, Iris Hui-Ru
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [42] A Deep Reinforcement Learning-Based Approach to Intelligent Powertrain Control for Automated Vehicles
    Chen, I-Ming
    Zhao, Cong
    Chan, Ching-Yao
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2620 - 2625
  • [43] Intelligent Pursuit-Evasion Game Based on Deep Reinforcement Learning for Hypersonic Vehicles
    Gao, Mengjing
    Yan, Tian
    Li, Quancheng
    Fu, Wenxing
    Zhang, Jin
    AEROSPACE, 2023, 10 (01)
  • [44] Deep reinforcement learning based lane detection and localization
    Zhao, Zhiyuan
    Wang, Qi
    Li, Xuelong
    NEUROCOMPUTING, 2020, 413 : 328 - 338
  • [45] Task offloading strategy and scheduling optimization for internet of vehicles based on deep reinforcement learning
    Zhao, Xu
    Liu, Mingzhen
    Li, Maozhen
    AD HOC NETWORKS, 2023, 147
  • [46] Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach
    Azzouz, Imen
    Fekih Hassen, Wiem
    ENERGIES, 2023, 16 (24)
  • [47] A collaborative scheduling method for cloud computing heterogeneous workflows based on deep reinforcement learning
    Chen, Genxin
    Qi, Jin
    Sun, Ying
    Hu, Xiaoxuan
    Dong, Zhenjiang
    Sun, Yanfei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 141 : 284 - 297
  • [48] Emergency Vehicle Aware Lane Change Decision Model for Autonomous Vehicles Using Deep Reinforcement Learning
    Alzubaidi, Ahmed
    Al Sumaiti, Ameena Saad
    Byon, Young-Ji
    Hosani, Khalifa Al
    IEEE ACCESS, 2023, 11 : 27127 - 27137
  • [49] Intelligent Scheduling with Reinforcement Learning
    Cunha, Bruno
    Madureira, Ana
    Fonseca, Benjamim
    Matos, Joao
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [50] Intelligent scheduling of double-deck traversable cranes based on deep reinforcement learning
    Xu, Zhenyu
    Chang, Daofang
    Luo, Tian
    Gao, Yinping
    ENGINEERING OPTIMIZATION, 2023, 55 (12) : 2034 - 2050