Task offloading strategy and scheduling optimization for internet of vehicles based on deep reinforcement learning

被引:8
|
作者
Zhao, Xu [1 ]
Liu, Mingzhen [2 ]
Li, Maozhen [3 ]
机构
[1] Xian Polytech Univ, Sch Elect & Informat, Xian 710048, Peoples R China
[2] Xian Polytech Univ, Sch Comp Sci, Xian 710048, Peoples R China
[3] Brunel Univ London, Dept Elect & Elect Engn, Uxbridge UB8 3PH, England
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; Internet of vehicles; Mobile edge computing; Scheduling optimization;
D O I
10.1016/j.adhoc.2023.103193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of data. However, the limited computing power of in-vehicle terminals cannot meet the demand. To solve this problem, we first simulate the task offloading model of vehicle terminal in Mobile Edge Computing (MEC) environment. Secondly, according to the model, we design and implement a MEC server collaboration scheme considering both delay and energy consumption. Thirdly, based on the optimization theory, the system optimization solution is formulated with the goal of minimizing system cost. Because the problem to be resolved is a mixed binary nonlinear programming problem, we model the problem as a Markov Decision Process (MDP). The original resource allocation decision is turned into a Reinforcement Learning (RL) problem. In order to achieve the optimal solution, the Deep Reinforcement Learning (DRL) method is used. Finally, we propose a Deep Deterministic Policy Gradient (DDPG) algorithm to deal with task offloading and scheduling optimization in high-dimensional continuous action space, and the experience replay mechanism is used to accelerate the convergence and enhance the stability of the network. The simulation results show that our scheme has good performance optimization in terms of convergence, system delay, average task energy consumption and system cost. For example, compared with the comparison algorithm, the system cost performance has improved by 9.12% under different task sizes, which indicates that our scheme is more suitable for highly dynamic Internet of Vehicles environment.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Research on a Task Offloading Strategy for the Internet of Vehicles Based on Reinforcement Learning
    Xiao, Shuo
    Wang, Shengzhi
    Zhuang, Jiayu
    Wang, Tianyu
    Liu, Jiajia
    SENSORS, 2021, 21 (18)
  • [2] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Zhang, Degan
    Cao, Lixiang
    Zhu, Haoli
    Zhang, Ting
    Du, Jinyu
    Jiang, Kaiwen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (02): : 1175 - 1187
  • [3] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Degan Zhang
    Lixiang Cao
    Haoli Zhu
    Ting Zhang
    Jinyu Du
    Kaiwen Jiang
    Cluster Computing, 2022, 25 : 1175 - 1187
  • [4] Joint Task Offloading Based on Distributed Deep Reinforcement Learning-Based Genetic Optimization Algorithm for Internet of Vehicles
    Hulin Jin
    Yong-Guk Kim
    Zhiran Jin
    Chunyang Fan
    Yonglong Xu
    Journal of Grid Computing, 2024, 22
  • [5] Joint Task Offloading Based on Distributed Deep Reinforcement Learning-Based Genetic Optimization Algorithm for Internet of Vehicles
    Jin, Hulin
    Kim, Yong-Guk
    Jin, Zhiran
    Fan, Chunyang
    Xu, Yonglong
    JOURNAL OF GRID COMPUTING, 2024, 22 (01)
  • [6] Task Offloading Strategy Based on Reinforcement Learning Computing in Edge Computing Architecture of Internet of Vehicles
    Wang, Kun
    Wang, Xiaofeng
    Liu, Xuan
    Jolfaei, Alireza
    IEEE ACCESS, 2020, 8 : 173779 - 173789
  • [7] Parked Vehicles Assisted Task Offloading Based on Deep Reinforcement Learning
    Zeng, Feng (fengzeng@csu.edu.cn), 1600, CEUR-WS (3748):
  • [8] Edge Computing Task Offloading Optimization for a UAV-Assisted Internet of Vehicles via Deep Reinforcement Learning
    Yan, Ming
    Xiong, Rui
    Wang, Yan
    Li, Chunguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5647 - 5658
  • [9] QoE-Based Task Offloading With Deep Reinforcement Learning in Edge-Enabled Internet of Vehicles
    He, Xiaoming
    Lu, Haodong
    Du, Miao
    Mao, Yingchi
    Wang, Kun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (04) : 2252 - 2261
  • [10] Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles
    Wang, Jianxi
    Wang, Liutao
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021,