Task offloading strategy and scheduling optimization for internet of vehicles based on deep reinforcement learning

被引:8
|
作者
Zhao, Xu [1 ]
Liu, Mingzhen [2 ]
Li, Maozhen [3 ]
机构
[1] Xian Polytech Univ, Sch Elect & Informat, Xian 710048, Peoples R China
[2] Xian Polytech Univ, Sch Comp Sci, Xian 710048, Peoples R China
[3] Brunel Univ London, Dept Elect & Elect Engn, Uxbridge UB8 3PH, England
基金
中国国家自然科学基金;
关键词
Deep reinforcement learning; Internet of vehicles; Mobile edge computing; Scheduling optimization;
D O I
10.1016/j.adhoc.2023.103193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Driven by the construction of smart cities, networks and communication technologies are gradually infiltrating into the Internet of Things (IoT) applications in urban infrastructure, such as automatic driving. In the Internet of Vehicles (IoV) environment, intelligent vehicles will generate a lot of data. However, the limited computing power of in-vehicle terminals cannot meet the demand. To solve this problem, we first simulate the task offloading model of vehicle terminal in Mobile Edge Computing (MEC) environment. Secondly, according to the model, we design and implement a MEC server collaboration scheme considering both delay and energy consumption. Thirdly, based on the optimization theory, the system optimization solution is formulated with the goal of minimizing system cost. Because the problem to be resolved is a mixed binary nonlinear programming problem, we model the problem as a Markov Decision Process (MDP). The original resource allocation decision is turned into a Reinforcement Learning (RL) problem. In order to achieve the optimal solution, the Deep Reinforcement Learning (DRL) method is used. Finally, we propose a Deep Deterministic Policy Gradient (DDPG) algorithm to deal with task offloading and scheduling optimization in high-dimensional continuous action space, and the experience replay mechanism is used to accelerate the convergence and enhance the stability of the network. The simulation results show that our scheme has good performance optimization in terms of convergence, system delay, average task energy consumption and system cost. For example, compared with the comparison algorithm, the system cost performance has improved by 9.12% under different task sizes, which indicates that our scheme is more suitable for highly dynamic Internet of Vehicles environment.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Task Offloading Strategy for Unmanned Aerial Vehicle Power Inspection Based on Deep Reinforcement Learning
    Zhuang, Wei
    Xing, Fanan
    Lu, Yuhang
    SENSORS, 2024, 24 (07)
  • [32] Deep Reinforcement Learning Based on Parked Vehicles-Assisted for Task Offloading in Vehicle Edge Computing
    Wang, Bingxin
    Liu, Lei
    Wang, Jie
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 438 - 443
  • [33] Deep reinforcement learning-based optimization strategy for the cooperative scheduling of harvesters
    Li, Zikang
    Zhang, Fan
    Teng, Guifa
    Li, Zheng
    Wang, Ziyi
    Ma, Shiji
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 40 (14): : 23 - 32
  • [34] Improving the performance of tasks offloading for internet of vehicles via deep reinforcement learning methods
    Wang, Ting
    Luo, Xiong
    Zhao, Wenbing
    IET COMMUNICATIONS, 2022, 16 (10) : 1230 - 1240
  • [35] Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach
    Azzouz, Imen
    Fekih Hassen, Wiem
    ENERGIES, 2023, 16 (24)
  • [36] Delay Constrained Hybrid Task Offloading of Internet of Vehicle: A Deep Reinforcement Learning Method
    Wu, Chenhao
    Huang, Zhongwei
    Zou, Yuntao
    IEEE ACCESS, 2022, 10 : 102778 - 102788
  • [37] A Distributed Computation Offloading Scheduling Framework based on Deep Reinforcement Learning
    Dai, Bin
    Ren, Tao
    Niu, Jianwei
    Hu, Zheyuan
    Hu, Shucheng
    Qiu, Meikang
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 413 - 420
  • [38] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [39] Multi objective dynamic task scheduling optimization algorithm based on deep reinforcement learning
    Cheng, Yuqing
    Cao, Zhiying
    Zhang, Xiuguo
    Cao, Qilei
    Zhang, Dezhen
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (05): : 6917 - 6945
  • [40] Multi objective dynamic task scheduling optimization algorithm based on deep reinforcement learning
    Yuqing Cheng
    Zhiying Cao
    Xiuguo Zhang
    Qilei Cao
    Dezhen Zhang
    The Journal of Supercomputing, 2024, 80 : 6917 - 6945