A Mitochondrial Basis for Heart Failure Progression

被引:3
|
作者
Watson, William D. [1 ,2 ]
Arvidsson, Per M. [2 ,3 ,4 ]
Miller, Jack J. J. [2 ,5 ]
Lewis, Andrew J. [2 ]
Rider, Oliver J. [2 ]
机构
[1] Univ Cambridge, Div Cardiovasc Med, Cambridge, England
[2] Univ Oxford, Oxford Ctr Magnet Resonance Res, Oxford, England
[3] Lund Univ, Dept Clin Sci Lund, Clin Physiol, Lund, Sweden
[4] Skane Univ Hosp, Dept Clin Physiol, Lund, Sweden
[5] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
关键词
Heart failure; Mitochondria; Redox; Calcium; ATP; PERMEABILITY TRANSITION PORE; PRESSURE-VOLUME AREA; IN-VIVO P-31; CARDIAC-HYPERTROPHY; FAILING HEART; KINASE-II; OXIDATIVE-PHOSPHORYLATION; SARCOPLASMIC-RETICULUM; METABOLIC FLEXIBILITY; SYSTEM BIOENERGETICS;
D O I
10.1007/s10557-024-07582-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.
引用
收藏
页码:1161 / 1171
页数:11
相关论文
共 50 条
  • [31] Metabolic disorder in the progression of heart failure
    Zhang, Xiuxiu
    Liu, Huiying
    Gao, Juan
    Zhu, Min
    Wang, Yupeng
    Jiang, Changtao
    Xu, Ming
    SCIENCE CHINA-LIFE SCIENCES, 2019, 62 (09) : 1153 - 1167
  • [32] The cellular pathophysiology of progression to heart failure
    Wagoner, LE
    Walsh, RA
    CURRENT OPINION IN CARDIOLOGY, 1996, 11 (03) : 237 - 244
  • [33] The role of arrhythmias in the progression of heart failure
    De Ferrari, GM
    Tavazzi, L
    EUROPEAN JOURNAL OF HEART FAILURE, 1999, 1 (01) : 35 - 40
  • [34] Remodeling in the ischemic heart: the stepwise progression for heart failure
    Mill, J. G.
    Stefanon, I.
    dos Santos, L.
    Baldo, M. P.
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2011, 44 (09) : 890 - 898
  • [35] The Mechanisms for the Progression of Hypertensive Heart Disease to Heart Failure
    Hasebe, Naoyuki
    JOURNAL OF CARDIAC FAILURE, 2011, 17 (09) : S139 - S139
  • [36] Mitochondrial redox regulation in heart failure
    Maack, C.
    FEBS OPEN BIO, 2019, 9 : 25 - 25
  • [37] Mitochondrial oxidative stress and heart failure
    Tsutsui, Hiroyuki
    INTERNAL MEDICINE, 2006, 45 (13) : 809 - 813
  • [38] MITOCHONDRIAL FISSION AND FUSION IN HEART FAILURE
    Knowlton, A. A.
    Chen, L.
    CARDIOLOGY, 2013, 125 : 18 - 18
  • [39] Mitochondrial redox regulation in heart failure
    Maack, C.
    ACTA PHYSIOLOGICA, 2017, 221 : 34 - 34
  • [40] Rescue of Heart Failure by Mitochondrial Recovery
    Marquez, Jubert
    Lee, Sung Ryul
    Kim, Nari
    Han, Jin
    INTERNATIONAL NEUROUROLOGY JOURNAL, 2016, 20 (01) : 5 - 12