A Mitochondrial Basis for Heart Failure Progression

被引:3
|
作者
Watson, William D. [1 ,2 ]
Arvidsson, Per M. [2 ,3 ,4 ]
Miller, Jack J. J. [2 ,5 ]
Lewis, Andrew J. [2 ]
Rider, Oliver J. [2 ]
机构
[1] Univ Cambridge, Div Cardiovasc Med, Cambridge, England
[2] Univ Oxford, Oxford Ctr Magnet Resonance Res, Oxford, England
[3] Lund Univ, Dept Clin Sci Lund, Clin Physiol, Lund, Sweden
[4] Skane Univ Hosp, Dept Clin Physiol, Lund, Sweden
[5] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
关键词
Heart failure; Mitochondria; Redox; Calcium; ATP; PERMEABILITY TRANSITION PORE; PRESSURE-VOLUME AREA; IN-VIVO P-31; CARDIAC-HYPERTROPHY; FAILING HEART; KINASE-II; OXIDATIVE-PHOSPHORYLATION; SARCOPLASMIC-RETICULUM; METABOLIC FLEXIBILITY; SYSTEM BIOENERGETICS;
D O I
10.1007/s10557-024-07582-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.
引用
收藏
页码:1161 / 1171
页数:11
相关论文
共 50 条
  • [11] Mitochondrial centrality in heart failure
    Marin-Garcia, Jose
    Goldenthal, Michael J.
    HEART FAILURE REVIEWS, 2008, 13 (02) : 137 - 150
  • [12] Mitochondrial centrality in heart failure
    José Marín-García
    Michael J. Goldenthal
    Heart Failure Reviews, 2008, 13 : 137 - 150
  • [13] Mitochondrial dysfunction in heart failure
    Marin-Garcia, J
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2003, 41 (12) : 2299 - 2299
  • [14] Mitochondrial dysfunction in heart failure
    Mariana G. Rosca
    Charles L. Hoppel
    Heart Failure Reviews, 2013, 18 : 607 - 622
  • [15] Mitochondrial Dynamics and Heart Failure
    Knowlton, A. A.
    Liu, T. T.
    COMPREHENSIVE PHYSIOLOGY, 2016, 6 (01) : 507 - 526
  • [16] Inflammation and metabolic disorders as the basis of myocardial remodeling and chronic heart failure progression in metabolic syndrome
    Ivanova, E.
    Fedorova, T.
    Tazina, S.
    Semenenko, N.
    Roitman, A.
    Loshchits, N.
    Generalova, N.
    EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 : 329 - 330
  • [17] Novel Mitochondrial Protein D-glutamate Cyclase Decreases During the Progression of Heart Failure
    Tateishi, Shuhei
    Ariyoshi, Makoto
    Katane, Masumi
    Hamase, Kenji
    Miyoshi, Yurika
    Nakane, Maiko
    Hoshino, Atsushi
    Okawa, Yoshifumi
    Mita, Yuichiro
    Kaimoto, Satoshi
    Uchihashi, Motoki
    Fukai, Kuniyoshi
    Ono, Kazunori
    Hato, Daichi
    Yamanaka, Ryoetsu
    Honda, Sakiko
    Fushimura, Yohei
    Kwai-Kanai, Eri
    Ishihara, Naotada
    Mita, Masashi
    Homma, Hiroshi
    Matoba, Satoaki
    CIRCULATION, 2017, 136
  • [18] HEART-FAILURE ON THE BASIS OF HYPERTENSION
    SCHWARTZKOPFF, B
    MOTZ, W
    VOGT, M
    STRAUER, BE
    CIRCULATION, 1993, 87 (05) : 66 - 72
  • [19] Revealing the cellular basis of heart failure
    Bridge, John H. B.
    Savio, Eleonora
    BIOPHYSICAL JOURNAL, 2007, 93 (11) : 3731 - 3732
  • [20] Challenges for the Basis of Practice in Heart Failure
    Stevenson, Lynne Warner
    CIRCULATION-HEART FAILURE, 2008, 1 (01) : 81 - 83